数学六年级教案(优质13篇)
文件格式:DOCX
时间:2023-12-14 14:34:17    小编:文轩

数学六年级教案(优质13篇)

小编:文轩

教案的编写需要注重教学手段和教学策略的选择。教案的具体内容应体现教学目标的层次性和递进性。以下是小编为大家整理的教案案例,供大家互相学习和借鉴。

数学六年级教案篇一

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

正确地确定单位1

教学过程备注

分析题意,理解数量关系。

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

课堂小结。

板书:

数学六年级教案篇二

教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。

使学生掌握用整十数乘的口算方法。

理解用整十数乘的算理。

用十位上的乘后,在得数的末尾填一个0。

例3、例4的教学挂图。

一、复习。

口算下面各题:

1352732304。

1541621405。

指名让学生说一说135、2304、1404的口算过程。

二、新课。

1.教学例3。

教师出示例3的乒乓球挂图,如下:

用纸盖住最右边的一袋,提问:

这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。

接着露出盖住的那袋乒乓球,提问:

刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。

谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。

2.做做一做的第1题。

让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:

这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。

3.做做一做的第2题。

让学生把得数写在书上。集体订正。

4.教学例4。

教师出示例4的.皮球图。如下:

提问:

这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。

620怎样口算呢?

先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:

从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。

求20盒皮球的个数,也就是求几橡皮球的个数?

要求10摞皮球的个数,可以先求几橡皮球的个数?

一摞皮球有多少个?怎样想的?

几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。

一摞是12个,10摞是几个12?是多少?

几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。

算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。

最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。

5.做例4下面的做一做的第1题。

让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;

这几道题和例4的被乘数都是几位数?乘数都是什么数?

一位数乘以整十数在口算时,分了几步?

最后,让学生用这个规律把这道题再口算一遍。

6.做例4下面做一做的第2题。

三、练习。

做练习一的第6~11题。

1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。

2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。

3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。

4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。

5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:

这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。

205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。

数学六年级教案篇三

掌握条形和折线统计图表示统计数据的方法。

11、掌握条形和折线统计图表示统计数据的方法,加深对条形和折线统计图所表示的数据的理解,能利用折线统计图对数据进行分析。

2.联系实际进行统计,经历统计过程,体会统计在实际中的应用和作用,培养统计的意识,提高实践能力。

导学法、尝试法。

利用条形和折线统计图。

教师预设。

学生活动。

(1)复习条形和折线统计图的有关知识。

(2)说说条形统计图和折线统计图的区别。

1、请学生测量全班的身高,并把数据记录下来。

2、学生完成书中表格。

3、师生核对。小结。

4、完成书中复式条形统计图。

提问:你认为完成一项统计要经过哪些过程,

说明:一项完整的统计,先要收集数据并进行分类整理,再选择适当的统计图或。

5.做p63练习四实践活动第(3)小题。

让学生看第3题,说一说第3题的题意和从统计表里知道了什么。

学生独立完成,小组合作研究,派代表发言。

2.统计表表示出相关的数据,然后对数据作出比较,分析、推理和判断。

1.做补充练习。

让学生了解题意。要求两名学生相互合作,按要求从复印的身高记录上收集自己。

和同伴的身高数据。要求在课本上制成复式折线统计图。让学生与自己的同伴讨论从。

图中能得出哪些结论。组织学生在班内交流自己得出的结论。提问;你认为复式折线。

2.统计家庭电话费支出情况。

让学生拿出事先收集的家庭电话费支出情况,要求学生看一看每月的`支出的金额。你能与自己的同桌同学合作,制作出你们两家的电话费支出的复式折线统计图吗?学生完成复式折线统计图。现在请大家仔细观察自己制作的复式折线统计图,看看你们家的电话费支出情况怎样,比比两家去年下半年的电话费支出有什么不同。

这节课我们练习了什么内容?你进一步明确了哪些问题?

自制练习纸(每生一张:内容是身高、体重统计图)。

数学六年级教案篇四

教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。

教学重点:分数乘整数的意义。

教学难点:分数乘整数的计算法则:如何先约分再乘。

教学过程:

一、复习。

1、5个12是多少?

用加法算:12+12+12+12+12。

用乘法算:125。

问:125算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

二、新授。

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)。

用乘法算:(块)。

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)。

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。

数学六年级教案篇五

整理与复习学到的知识,试一试第1题。

学情分析。

学生知识的整理和归类。

学习目标。

1、进一步理解和掌握以前学过的'知识和计算方法。

2、对所学知识进行巩固和复习。

导学策略。

练习法。

教学准备。

小黑板、投影仪、投影片。

导学流程设计:

教师预设。

学生活动。

一.引入。

1.问:以前几个单元我们一起学习了哪些知识?指名回答。

2.师生一起归纳、整理几个单元所学内容。

3.揭示课题。

4.请学生把知识进行简单的整理。并写下来。

5.与同学进行交流。

二.展开(要多设计一些学生生活实际的题目,让题目靠近学生生活。)。

1.根据学到的知识,请学生提问题。

2.学生自己尝试解决。

3.与同学进行交流。

注意学生的参与性和积极性。

三.综合应用。

投影出示p66练一练第1题。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

三.总结。

四.作业。

学生指名回答。以前几个单元我们一起学习了哪些知识?

学生把知识进行简单的整理。并写下来。

与同学进行交流。

根据学到的知识,请学生提问题。

学生自己尝试解决。

与同学进行交流。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程。

教学反思。

达标情况分析:很好。

教学心得体会:多给学生一些思考的空间,学生更喜欢。

数学六年级教案篇六

掌握解决此类问题的方法。

理解题中的数量关系。

1、把下面各数化成百分数。

0.631.0870.044。

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。

(1)某种学生的出油率是36%。

(2)实际用电量占计划用电量的80%。

(3)李家今年荔枝产量是去年的120%。

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?

(2)实际造林是计划造林的`百分之几?

(3)实际造林比计划造林增加百分之几?

(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。

3、学生自主解决实际早林比计划增加了百分之几的问题。

(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

方法一:(14-12)12=2120.167=16.7%。

方法二:14121.167=116.7%116.7%-100%=16.7%。

(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?

学生列出算式:(14-12)14。

(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。

1、独立完成课本第90页做一做的题目。

2、练习二十二第1、2题。

数学六年级教案篇七

教学内容:冀教版《数学》六年级上册第92、93页。

教学目标:

1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

3、感受数学在解决问题中的价值,培养数学应用意识。

课前准备:一个蒙古包图片。

教学过程:

1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

生:蒙古包。

师:对,蒙古包。看,老师带来了一张蒙古包的图片。

图片贴在黑板上。

师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

师:如果要计算蒙古包的占地面积,怎么办?

生:测量出蒙古包的直径,就能计算出它的占地面积。

生:不好测量。

生:测量出周长。

师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

板书:周长18.84米。

1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

学生讨论。

师:谁来说说已知圆的周长是多少,怎样求圆的面积?

生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

学生说不完整,教师参与交流。

师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

学生独立计算,教师巡视并指导。

生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。

学生说的同时,教师板书:

蒙古包的半径:

2×3.14×r=25.12。

r=25.12÷6.28。

r=4。

蒙古包的占地面积:

3.14×42=50.24(平方米)。

如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

学生独立完成,教师个别指导。

师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。

师:看第2题,求花池的面积。自己解答。

交流时,请学习稍差的学生回答。

答案:3.14×2×r=18.84。

r=3。

3.14×32=28.26(平方米)。

2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

学生完成后,指名汇报。答案:。

3.14×2×r=100.5。

r=16。

3.14×162=803.84(平方厘米)。

生:就是把树锯断后的圆面。

师:树木的周长相当于这个横截面的什么?

生:周长。

师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

学生读题。

学生可能出现不同意见,都不做评价。

1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

学生合作研究,教师参与指导。

学生可能出现不同的假设。如:(1)假设铁丝长1米。

正方形的边长:1÷4=0.25=25(厘米)。

正方形面积:25×25=625(平方厘米)。

圆半径:100÷2÷3.14≈16(厘米)。

圆面积:3.14×162≈803(平方厘米)。

结论:圆的面积大。

(2)假设铁丝长2米。

正方形的边长:2÷4=0.5=50(厘米)。

正方形面积:50×50=2500(平方厘米)。

圆半径:200÷2÷3.14≈32(厘米)。

圆面积:3.14×322≈3215(平方厘米)。

结论:圆的面积大。

(3)假设铁丝长4米。

正方形的边长:4÷4=1(米)。

正方形面积:1×1=1(平方米)。

圆半径:4÷2÷3.14≈0.64(米)。

圆面积:3.14×0.642≈1.29(平方米)。

结论:圆的面积大。

3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

数学六年级教案篇八

(5)列式计算。

5、小组汇报(二):假设大船与小船都是5只。

要求学生汇报后,全班共同填教科书191页表格,并解决问题。

三、巩固反思,提升策略。

练一练。

1、学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。

读题理解题意。提问:要算到怎样才能够解决问题?

2、学生独立完成,并汇报。

四、全课总结:

教学目标:

1、使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。

教学重、难点:

1、教学重点:用“替换”和“假设”的策略解决实际问题。

2、教学难点:选择合理的策略有效的解决问题。

教学过程。

一、策略回忆。

提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。

二、巩固提升。

练习十七第2题。

1、读题:

2、你准备用什么策略来解决这个问题?

3、准备怎样替换?关键是什么?

4、学生独立完成并检验。

练习十七第3题:

1、读题。

2、你准备用什么策略来解决这个问题?

3、准备怎样假设?关键是什么?

4、学生独立完成并检验。

练习十七第4题:

学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。

三、你知道吗?

一起读一读,你能理解题意吗?你会解答吗?

数学六年级教案篇九

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

比例的基本质性。

发现并概括出比例的基本质性。

多媒体课件。

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

和5:2。

1/2:1/3和6:4。

和1:4。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书。

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:=60:40。

内项:6o。

外项:40。

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如::=60:40。

外内内外。

项项项项。

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。(师作适当的补充)。

在比例里,两个内项的积等于两个外项的积。

板书。

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

(4)举例说明,检验发现。

1

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=60/40。

3.。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5=1/4:1/10。

()()=()()。

数学六年级教案篇十

1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。

抽取问题。

理解抽取问题的基本原理。

一、教学例。

1、猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2、实验活动。

(1)一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3、发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做。

第1题。

(1)独立思考,判断正误。

(2)同学交流,说明理由。

第2题。

(1)说一说至少取几个,你怎么知道呢?

(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习。

完成课文练习十二第1、3题。

数学六年级教案篇十一

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

如何确定每一条跑道的起跑点。

确定每一条跑道的起跑点。

一、提出研究问题。(出示运动场运动员图片)。

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。

2、各条跑道的起跑线应该向差多少米?

二、收集数据。

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。

三、分析数据。

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、得出结论。

1、看书p76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的.直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)。

五、课外延伸。

200m跑道如何确定起跑线?

数学六年级教案篇十二

教学目标:

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的`更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

教学目标

1、经历自主回顾和整理整数、小数、分数四则运算的过程。

2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、估算。

先让生独立思考并判断,再回答是如何判断的。

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

师:这节课我们整理和回顾了什么内容?需要注意什么?

数学六年级教案篇十三

1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

一、复习导入。

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米。

(3)我们认识的体积单位有哪些?

板书:立方米立方分米立方厘米。

提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率。

二、自主探索验证猜测。

1、教学例11。

(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

(2)提问:这两个正方体的体积是否相等?你是怎样想的?

(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。

(3)用图中给出的数据分别计算它们的体积。

学生分别算一算,然后在班内交流:

棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。

棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。

(4)根据它们的体积相等,可以得出怎样的结论?

1立方分米=1000立方厘米(板书:=)。

(5)谁来说一说,为什么1立方分米=1000立方厘米?

2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

学生在小组里讨论。(板书:立方米=1000立方分米)。

引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

三、巩固深化。

1、出示书第30页的“练一练”。

学生先独立完成。

交流你是怎样想的。

小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

2、出示练习七第1题。

学生独立完成表格。

班内交流:说说长度、面积和体积单位有什么联系?

而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

3、出示练习七的第2题。

学生先独立完成。

交流:你是怎样想的。

指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

4、出示练习七的第3题。

学生独立完成。

交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

5、出示练习七的第4题。

学生独立完成后集体交流。

四、课堂总结。

通过这节课的学习,你有什么收获?

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
数学六年级教案(优质13篇) 文件夹
复制