教案可以帮助教师明确教学目标,提前准备好所需材料和资源。编写教案前,首先需要明确教学目标,明确教学内容和教学重点。以下是一些经过实践验证的教案范文,希望可以给大家提供一些借鉴和参考。
下面是某一地区的`平面图。
1、用数对标出环球大厦和购物中心的位置。
2、图中(11,4)表示的位置是()。
3、()和()在同一行上。
4、小明从公园门口出来,到书店该怎样走?
(1)独立完成解答。
(2)集体评讲。
《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
一、导入新课。找出1~20各数的因数。
你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……。)。
今天我们学习的内容就与一个数因数的个数有关。
二、新授。
探究一:认识质数和合数。
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的.数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)。
师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)。
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……。)。
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……。)。
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)。
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)。
探究二:找出100以内的质数,做一个质数表。(课本p14例1。)。
(媒体出示图表)。
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……。)。
(学生可能回答:50的倍数,51的2倍是102,超过100了。)。
(学生制作100以内的质数表。)。
三、练习。
(课本p16∕练习四第一、二题。)。
四、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3、1不是质数,也不是合数。
五、作业。
p16第三、四、五题。
附板书设计:
质数与合数。
因数个数。
11个。
自然数质数(素数):只有1和它本身两个因数。2个。
合数:除了1和它本身还有别的因数。2个以上。
1既不是质数,也不是合数。
1、练习三第5题。
(1)理解题意,明白“行”“列”表示的意思。
(2)根据(x,5)这个数对,说说x表示的是列数还是行数?
根据这个数对能确定什么?它表示的可能是哪个班?
(3)在小组中说说第(3)小题。
这里的x,可能表示哪些数?为什么?
2、完成练习三第6题。
(1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。
(2)在小组中设计交流。
(3)展示作业,汇报结果。
你能用数对描述一下自己设计的摆放位置吗?
你觉得自己设计的如何?优点是什么?
互相评价:设计是否合理?是否美观?
3、完成练习三第7题。
平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)。
第一个怎么变化的?
独立在书上方格中完成第(3)小题。
在小组中完成第(4)小题。
说说顺次连接四个点得到了什么图形?
4、完成练习三第8题。
理解题意,简单介绍国际象棋的棋盘。
棋盘上的列车行分别用什么表示?
用g2表示白王,和数对表示的方法相同吗?
完成第(2)小题的填空。
在小组中互相说说黑车从c6~c2,是怎样前进的?
这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系,解决一些简单的问题。
在引入课题之前,先复习旧知。课件呈现几道简单的口算提,以唤醒学生对整数除法的记忆,为探索新知做铺垫。在探索新知的时候,先呈现分蛋糕的题材,“把1个蛋糕平均分给3个人,每人分得多少个”有了刚才的复习知识进行铺垫、迁移,很容易能用算式1/3来计算,学生很快说出1/3,这时我会再提问:“为什么是1/3?”“你是怎么分的?”学生用准备的圆片分一分;接着出示:把3块月饼平均分给4人,每人分得多少块?学生又拿出学具自主探究,再演示。学生一步步经历了分的过程,对分数的意义能理解得更好了,也就明白了为什么是3/4。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数和除法之间的关系的理解、建立过程,实质上是与分数意义的拓展同步的。
教学之后,再来反思自己的教学,发现在小学阶段,学生脑海里的数学知识应当是抽象与具体哭互相转换的数学知识。
教学内容:。
教学目标:。
1、通过引导学生对本单元进行回顾整理,加深学生对分数意义、分数与除法的关系的理解,进一步认识真分数、假分数,并能熟练地将假分数化成带分数或整数。
2、在探索分数的意义,探讨分数的基本性质的过程中,进一步建立数感,会用分数表达和交流信息并能熟练的用分数的基本性质解决简单的实际问题。
3、通过探究、观察、操作、解决问题等丰富的数学活动,感受数学与日常生活的密切联系,进一步了解分数在实际生活中的应用,体验学数学、用数学的乐趣。
教学重点:
教学难点:
会用分数表达和交流信息并能熟练的用分数的基本性质解决简单的实际问题。
教具:知识结构图。
教学过程:
一、问题回顾,再现新知。
谈话:同学们,通过本单元的学习,你都掌握了哪些内容?有什么收获和困惑?咱们交流一下吧!
学生自由发言。
二、分层练习,巩固提高。
1.出示综合练习第1题。
学生独立完成,集体订正。
2.出示综合练习第2题。
让学生找出每个分数的单位“1”,然后再说出每个分数的意义。
3.判断对错。
出示综合练习第4题。
4.出示综合练习第6题。
这是一道诗配画的题目。画中有四句诗,共有10个表示数的文字,先让学生回答占整首诗字数的几分之几,再让学生提出其他有关分数的问题,如:“一个字占总字数的几分之几?”“一句占总字数的几分之几?”……。
5.出示综合练习第9题。
先让学生量出长方形的长和宽,然后再写出宽是长的几分之几,长是宽的几倍。对于涂出长方形面积的1/2,要让学生自主去涂,重在交流时能说出自己的想法和理由。
6、独立思考,拓展延伸。
7、组内交流,补充完善。
师谈话:把整理好的内容在组内交流,交流时一个同学一个同学地交流,其他同学补充。
(小组内自由交流)。
8、全班进行组与组汇报交流,教师适时总结提升。
师谈话:哪个小组愿意把你们合作整理的成果向大家展示一下?
谈话:你认为那个小组整理得更合理更有创意?为什么?引导学生互相评价。
三、梳理总结,提升认识、
1.出示综合练习第13题。
先让学生独立完成,再集体订正。
2.出示综合练习第14题。
这是一道思考题,红色部分占整个图形几分之几的,学生能直接看出来,其他颜色占整个图形的几分之几学生不易看出来,这时可启发学生动手画一画、分。
一分,然后写出相应的分数。
使用说明:
1:课后反思:学生理解的很好。
2:教学建议:在探索分数的意义,探讨分数的基本性质的过程中,进一步建立数感,会用分数表达和交流信息并能熟练的用分数的基本性质解决简单的实际问题。
3:需要破解的地方:通过探究、观察、操作、解决问题等丰富的数学活动,感受数学与日常生活的密切联系,进一步了解分数在实际生活中的应用,体验学数学、用数学的乐趣。
教学目标:知识与技能:
1、掌握质数和合数的意义。
2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。
3、通过探究质数和合数的意义,培养学生的探究意识和能力。
数学思考:
1、透过实际箱装饮料罐的排列方式,感知生活中有数学。
2、能对现实生活中箱装饮料罐的数字信息作出合理解释。
情感与态度:
1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。
2、在形式多样的练习中,激发学生的学习兴趣。
教具学具:
cai、投影仪、学习单2张,学号数字卡。
教学过程:课前谈话。
如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。
一、生活实例引入。
1、观察生活:
(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。
请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)。
师:真是这样的吗?
(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。
教师出示4张不同数量装箱的照片:板书:9=3×3。
9瓶啤酒、12瓶可乐、12=3×4。
15瓶牛奶、24瓶雪碧15=3×5。
24=4×6。
学生观察并说一说:9瓶啤酒排成3行3列,9=3×3……。
(师板书在黑板右侧)。
2、实际数量的多种排列方法,分析可行性:
这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)。
板书:9=3×3=1×9。
12=3×4=2×6=1×12。
15=3×5=1×15。
24=4×6=3×8=2×12=1×24。
提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)。
为什么?(不便携带……)。
3、比较质疑,引入新课:
板书:13=1×13学生思考,同桌说一说。
17=1×17(师板书在黑板左侧)。
19=1×19。
你还能举出几个这样的数吗?
据学生回答:20以内的质数。(这样的数还有很多)。
二、探究原因:
(一)、探究质数意义:
1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?
(评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)。
四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)。
汇报:(鼓励学生用自己的语言描述)。
整理揭示:象这样只有1和它本身两个约数的数叫“质数”。
(cai辅助逐步演示。)。
2:1、2。
3:1、3。
5:1、5。
7:1、7。
11:1、11。
13:1、13。
17:1、17。
19:1、19。
……。
2、再举几个质数,并说明理由。
(评:适时巩固应用,加深理解概念。)。
(二)、探究合数。
1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?
除了1和它本身还有别的约数。
揭示:象这样除了1和它本身,还有别的约数的数,叫“合数”。
(cai辅助逐步演示)。
核心提示:在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨...
在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的`新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。
一、学生参与面广,学习兴趣浓。
新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。
二、从学生的角度出发,把课堂的主动权还给学生。
课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。
三、点燃学生智慧的火花,让学生真正活起来。
爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。
【】。
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过观察、自主学习-合作、交流验证-分类、比较-抽象-归纳总结-巩固。提高学习过程,培养学生观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【:
1.掌握质数、合数的概念。
2.正确地判断一个数是质数还是合数?
【】:课件。
一、导入新课:
1.导入课题:前面我们学习了奇数和偶数。那么自然数还有没有其他的分法?今天这节课我们就一起来研究“质数与合数”(板书课题)。
2.说出自己的学号、爸爸、妈妈、爷爷或奶奶的年龄,老师判断这个数是质数还是合数?
3.激发兴趣。
二、探究新知。
1.说出1~20各数的因数。(课件出示,开火车的形式)。
2.观察思考这些数的因数的个数一样多吗?(生:不一样)。
3.师:你能把这些数按因数的个数进行分类吗?(学生讨论,分类)。
4.学生报结果(学生完成表格)。
5.观察比较,发现特点,归纳概念。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的.数叫做合数。
(3)师:1既不是质数,也不是合数。
6.最小的质数是几?有没有最大的质数?最小的合数是几?有没有最大的合数?
7.展示老师和学生制作的思维导图。
8.判断自己的学号是质数还是合数?
三、自学例1:
1.指名汇报预习的结果。
2.质疑。
3.找质数的方法是:筛选法。
4.修改自己圈的质数。
5.出示质数歌。
四、智慧大闯关:
1.判断下面的数字是质数还是合数?
(1)全年12个月,大月有31天,小月是30天,平年2月是28天,闰年2月是29天。
(2)五(1)班上学期有52人,这学期又转来1名学生,现在共53人。
2.下面的说法正确吗?说一说你的理由。
(1)所有的奇数都是质数。()。
(2)所有的偶数都是合数。()。
(3)在1,2,3,4,5,…中,除了质数以外都是合数。()。
(4)两个质数的和是偶数。()。
3.猜数。
4.猜一猜老师的电话号码是多少?
(1)是奇数,但不是质数也不是合数。
(2)比最小的质数大1。
(3)比最小的合数大2。
(4)10以内最大的奇数。
(5)是奇数,但不是质数也不是合数。
(6)10以内既是奇数,又是合数。
(7)和第6个数相同。
(8)10以内最大的质数。
(9)10以内最大的偶数。
(10)和第一个数相同。
(11)是最小的偶数。
5.数学游戏。
五、数学文化:
结合数学文化进行思想教育。
1.使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2.培养学生观察、比较、归纳、概括的能力。
3.培养学生勇于实践、探索的学习品质。
【教学重点】。
质数和合数的概念。
【教学难点】。
正确判断一个数是质数还是合数。
【教学准备】。
1.教具准备:边长1厘米的小正方形若干、小组合作表格。
2.学具准备:小字本。
【教学过程】。
一、探究发现,总结概念:
学生动手在小字本上画一画。
生1:能拼成2个,横着和竖着。
生2:不对,横着和竖着是一样的。
师:你拼出的长方形长是几?宽边呢?
生3:长是3,宽是1。拼成3×1的形状。
根据学生回答教师填写表格。
正方形个数。
拼出长方形的个数。
长×宽。
3
1
3×1。
2、师:这样的四个小正方形能拼出几个不同的长方形?
学生动手画一画。学生各自独立思考后举手回答。并填写表格。
【突破正方形是特殊的长方形,有两种拼法。】。
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)并填写表格。
师:看表格,第三列与第一列有什么关系?
生:3和1是3的因数。……。
师:第三列改为正方形个数的因数。
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)。
生:刚才四个正方形能排出两个,如果用5个正方形只能排出1个。
师:一个例子就把你们刚才的结论给否定了。多有说服力的反例!
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种,你觉得当小正方形的个数是什么的时候,只能拼一种?(学生思考着,之后,相互之间展开了热烈的讨论。)。
学生举例:3,5,11,13,17……。
师:这些数有什么共同的特征?
学生举例:4、6、8、9、10、12、14、15……。
师:说得完吗?(生:说不完。)。
教学目标:
1、掌握2、5倍数的特征以及奇数和偶数的概念。
2、能够运用这些特征进行判断。
3、培养学生的概括能力。
教学重点:
2、奇数和偶数的概念。
教学过程:
1、复习:根据所学的因数和倍数知识,运用自己的座号说一句完整的话。如:我的座号是5,5是30的因数或5是1的倍数。
同座互说。
指名说。
同学们,我们先去看一场电影,座位号是多少的同学应该从双号入口进。
2、游戏。
(1)座号是2的倍数的同学起立。
(2)座号是5的倍数的同学起立,老师分别将2的倍数座号写在黑板左边,5的倍数座号写在黑板右边。
3、引入:2的倍数和5的倍数有哪些特征呢?今天进行研究(板书课题:2、5倍数的特征)。
1、观察:左边集合圈里的2的倍数座号有什么特点?(个位上是0,2,4,6,8。)。
2、举出几个2的倍数,看看符不符合这个特点?学生随口举例。
学生口答后,老师板书:个位上是0,2,4,6,8的数都是2的倍数。
3、奇数和偶数。
出示课件:2的倍数的数,这些数的个位上的数有什么特点?
个位上是0、2的数,都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇(ji)数。
老师指出:自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。习惯上称它们单数、双数。
4、练习:完成课本做一做,出示课件。
下列数中,哪些是奇数,哪些是偶数?
33983559880123。
3678808910006555656881。
奇数有:33,355,123,8089,655,881。
偶数有:98,988,0,3678,1000,5656。
2、学生自己动手在课本上找出5的倍数。
在下表中找出5的倍数,并涂上颜色。看看有什么规律。
个位上是___或___的数,是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
3、练习:完成课本做一做,出示课件。
下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2的倍数也是5的倍数?
243567909915。
6075106130521280。
2的倍数:24,90,60,106,130,280。
5的倍数:35,90,15,60,75,130,280,
既是2的倍数也是5的倍数:90,60,130,280。
做完这道题,你有什么收获?
重点指出。
个位上是0的数它既是2的倍数又是5的倍数.
现在问题怎么解决呢?两位同学都想得到它们?
提问:2的倍数有哪些?5的倍数呢?60和90是什么数?
谈话:今天,我们主要研究了什么?下面的时间,我们就围绕这些知识来练习几道题。
1、选出两张数字卡片,按要求组成一个数。
(1)组成的数是偶数;。
(2)组成的数是5的倍数;。
(3)组成的数既是2的倍数又是5的倍数;。
2、用0、2、5三个数字组成一个三位数。
(1)。组成的数是2的倍数;。
(2)。组成的数是5的倍数。
3、把下表中4的倍数涂上颜色。
4、下面的判断对吗?说说你的理由。
(1)个位上是2、4、6的数,都是2的倍数。
(2)个位上是1、3、5、7、9的数都是奇数。
(3)在全部自然数里,不是奇数就是偶数。
今天你有什么收获?
板书设计:
5的倍数:15、30、50、65,,,,个位上是0或5的数(偶数)是2的倍数:个位上是0、2、4、6、8的.数(奇数)不是2的倍数个位上是1、3、5、7、9的数2的倍数5的倍数作业纸:在5的倍数中画“”
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
小数除法的意义,小数除以整数(恰好除尽)的计算方法。
商的小数点与被除数的小数点对齐。
探究、交流、引导。
一、导入新课,创设情境。
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式:11、5÷512、6÷6。
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)。
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。
二、探索新知,解决问题。
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的.牛奶单价。
2、学生交流讨论,教师巡视指导。
3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?
引导出“商的小数点与被除数的小数点对齐”。
4、理解算理。
5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。
6、学生尝试计算,教师巡视指导。
三、巩固练习,拓展延伸。
1、完成教材第3页练一练第1题。
集体订正。
2、我是小小神算手。
20、4÷496、6÷4255、8÷31。
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
教师巡视指导。
四、全课总结。
今天你有什么收获呢?
甲商店牛奶每袋多少钱?乙甲商店牛奶每袋多少钱?
11、5÷5=2、3(元)12、6÷6=2、1(元)。
1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。
2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。
3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
1.掌握质数与合数的概念。
2.熟练记忆100以内的质数。
一、复习导入。
1.什么叫奇数?什么叫做偶数?
是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。
2.请说一说20和5的因数各有哪些?
有的数的因数个数多,有的数因数个数少。一个数最小的因数是1,最大的因数是它本身。
【设计意图】。
通过练习找一个数的因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。
二、探究新知。
1.找出1~10各数的因数。
1的因数有:1。
2的因数有:1,2。
3的因数有:1,3。
4的因数有:1,2,4。
5的因数有:1,5。
6的因数有:1,2,3,6。
7的因数有:1,7。
8的因数有:1,2,4,8。
9的因数有:1,3,9。
10的因数有:1,2,5,10。
2.按因数的个数分,你可以分成几类?
只有一个因数:1。
只有两个因数:2、3、5、7。
有两个以上个因数:4、6、8、9、10。
3.明确概念:一个数,如果只有1和它本身两个因数,这样的`数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。
注意:
1不是质数,也不是合数。
4.100以内的质数表。
5.100以内质数顺口溜。
2和3,5和7,11、13又17。
19、23、29、31,37和41。
43、47、53、59、61,67和71。
73、79、83、89、97。
【设计意图】。
通过质数表和顺口溜让学生熟练记住100以内的质数。
6.想一想:最小的质数和最小的合数分别是多少?
三、课堂练习。
1.判断下面说法是否正确?
(1)所有的偶数都是合数。
(2)所有的奇数都是质数。
(3)3的所有倍数都是合数。
(4)一个合数,最少有3个因数。
(5)1既不是质数,也不是合数。
2.将下面各数分别填入指定的圈里。
2737415861738395。
11143347576287999。
3.思维训练。
两个质数,和是9,积是多少?
四、课堂总结。
通过本节课学习你有哪些收获?