上海七年级册数学教案文案(模板18篇)
文件格式:DOCX
时间:2023-12-14 15:21:09    小编:灵魂曲

上海七年级册数学教案文案(模板18篇)

小编:灵魂曲

教案是教师根据教学大纲和教学要求,结合学生的学习情况编写的一种教学方案,能够帮助教师有效组织教学内容和过程。教案的编写要注意合理安排教学时间,确保教学进度的合理性。以下是小编为大家收集的教案范例,供教师们参考和借鉴。

上海七年级册数学教案文案篇一

2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;。

3.通过加法运算练习,培养学生的运算能力。

教学建议。

(一)重点、难点分析。

本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构。

(三)教法建议。

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和。

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如。

12-5+7应变成12+7-5,而不能变成12-7+5。

上海七年级册数学教案文案篇二

知识与技能:了解并掌握数据收集的基本方法。

过程与方法:在调查的过程中,要有认真的态度,积极参与。

情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】。

重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】。

讲授新课。

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

学生小组合作、讨论,学生代表展示结果。

教师指导、评论。

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答。

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;

(3)某种玉米种子的发芽率;

(4)学校门口十字路口每天7:00~7:10时的车流量。

文档为doc格式。

上海七年级册数学教案文案篇三

师:(手中拿着纸牌)这张纸牌是什么形状?这一副纸牌呢?(生:一张是长方形、一副是长方体)。

师:生活中你见过哪些物体的形状是长方体的?

生:牙膏盒、化装品盒、粉笔盒、冰箱……。

师:你们觉得长方体有什么特点?

生:(略)。

看来同学们对长方体的特征还是有所了解的。这节课我们来进一步研究长方体。

让学生初步感知长方体的面、棱、顶点等。

生:面。

师:再用手摸摸长方体相邻的两个面相交的这一条共有的边,它叫什么呢?

生:有的说叫边;有的说叫线段……)。

生:有一个点。

师:我们把三条棱相交的点叫做顶点。

1、探究长方体面的特征。

师:我们已经认识了长方体各部分名称,接下来我们来研究长方体的面有哪些特点。先请每组同学选择1~2个想研究的长方体物体,采用量一量、剪一剪、拼一拼等方法,当然也可以用信封里的长方形纸片做一个长方体,看同学们能否发现长方体的面有哪些特征?待会儿每组派代表汇报你们的探究成果。

师:哪组愿意先派代表来说说?

学生分组汇报讨论结果。

师:同学们真了不起!想了这么多的办法来验证长方体相对的2个面是相等的。

师:现在,你们拿起自己的长方体进一步观察,看一看长方体的6个面各是什么形状的?

通过学生观察得出两种情况:一种是6个面都是长方形:(板书:6个面都是长方形)另一种情况是有4个面是长方形,另外两个相对的面是正方形(板书:特殊情况有两个相对的面是正方形)。

2、探究长方体棱、顶点等特点。

师:请同学们数一数长方体共有多少条棱?你是怎样数的?(引导学生数时,要有序、不重复、不遗漏)。

学生讨论后,分组汇报。

师:怎么证明相对的棱长度相等?

学生分组汇报证明方法。

3、抽象概括总结特征。

4、认识长方体的长、宽、高。

小组合作,做长方体的框架。

师:请同学们拿出准备好的小棒、塑料拐角,做一个长方体的框架,并讨论汇报回答以下2个问题:

(1)它的12条棱可以分成几组?怎样分?

(2)相交于同一顶点的三条棱长度相等吗?

学生分组汇报讨论结果。

教师再将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。同时教师指出:长方体的长、宽、高根据长方体所放的位置的不同而改变,相交于每个顶点的三条棱的长度都可以分别叫做长方体的.长、宽、高。

1、基本练习:p23第1、2题。

2、综合练习:p23第3题。

3、拓展练习:(填一填)。

(1)把一块长、宽、高分别是16厘米、11厘米;7厘米的长方体,平均锯成两块小长方体。

其中每块小长方体都有()个面、()条棱、()个顶点。

(2)面积增加了()平方厘米。

师:通过这节课的学习,你有什么收获?

生:(略)。

上海七年级册数学教案文案篇四

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点。

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程。

一、复习提问。

1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全。

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成。

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授。

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)。

[先要求出师傅与徒弟各完成的工作量是多少?]。

师傅完成的工作量为=,徒弟完成的工作量为=。

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习。

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现。

由甲独做10小时;。

请你提出问题,并加以解答。

例如(1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结。

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之。

间的关系,即工作量=工作效率×工作时间。

工作效率=工作时间=。

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业。

教科书习题6.3.3第1、2题。

上海七年级册数学教案文案篇五

1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。

2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。

理解分数乘、除法应用题的异同点,会正确解答。

能正确解答分数乘、除法应用题。

一、复习引新。

(一)下面各题中应该把哪个数量看作单位“1”?

1、花手绢的块数是白手绢的。

2、白手绢块数的正好是花手绢的块数。

3、花手绢的块数相当于白手绢的。

4、白手绢块数的倍相当于花手绢的块数。

(二)教师提问。

1、求一个数是另一个数的的几分之几用什么方法?

2、求一个数的几分之几是多少用什么方法?

3、已知一个数的几分之几是多少,求这个数,用什么方法?

(三)谈话导入。

为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。

二、讲授新课。

(一)教学例3。

1、课件演示:分数除法应用题。

2、比较。

(1)我们把这三道题放在一起比较,它们有什么相同点?

相同点:三个数量是相同的;需要找准单位“1”来分析。

(2)它们有什么区别呢?

不同点:已知和所求不同;解题方法不同。

3、小结:分数应用题主要有以上三类:

(1)求一个数是另一个数的几分之几。

(2)求一个数的几分之几是多少。

(3)已知一个数的几分之几是多少求这个数。

4、解答分数应用题的方法是什么?

抓住分率句;找准单位“1”;画图来分析;列式不必急。

三、巩固练习。

(一)应用题。

1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

(1)学生独立分析列式。

(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。

2、学校有故事书36本,是科技书的,科技书有多少本?

3、学校有故事书36本,科技书是故事书的,科技书有多少本?

(二)补充条件并列式解答。

一条路长15千米,修了全长的,_________________?

(三)选择正确答案。

1、修一条长240千米的公路,修了,修了多少千米?

2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

240×240÷150÷240240÷150。

(四)思考题。

四、课堂小结。

这节课我们进行了三类题的对比练习。解决这三类题的关键是什么?

五、课后作业。

(一)解答下面各题。

1、六一班有学生45人,其中女生有20人。女生人数占全班的几分之几?

2、六一班有学生45人,女生占、女生有多少人?

3、六一班有男生25人,占全班的、全班共有学生多少人?

(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

(三)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

六、板书设计。

分数乘除法对比练习。

1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=。

2、池塘里有12只鸭,鹅的只数是鸭的、池塘里有多少只鹅?

12×=4(只)。

3、池塘里有4只鹅,正好是鸭的只数的、池塘里有多少只鸭?

4÷=12(只)。

上海七年级册数学教案文案篇六

1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。

2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。

教学重点。

理解分数乘、除法应用题的异同点,会正确解答。

教学难点。

能正确解答分数乘、除法应用题。

教学过程。

一、复习引新。

(一)下面各题中应该把哪个数量看作单位“1”?

1.花手绢的块数是白手绢的。

2.白手绢块数的正好是花手绢的块数。

3.花手绢的块数相当于白手绢的。

4.白手绢块数的倍相当于花手绢的块数。

(二)教师提问。

1.求一个数是另一个数的的几分之几用什么方法?

2.求一个数的几分之几是多少用什么方法?

3.已知一个数的几分之几是多少,求这个数,用什么方法?

(三)谈话导入。

为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。

二、讲授新课。

(一)教学例3。

1.课件演示:分数除法应用题。

2.比较。

(1)我们把这三道题放在一起比较,它们有什么相同点?

相同点:三个数量是相同的;需要找准单位“1”来分析。

(2)它们有什么区别呢?

不同点:已知和所求不同;解题方法不同。

3.小结:分数应用题主要有以上三类:

(1)求一个数是另一个数的几分之几。

(2)求一个数的几分之几是多少。

(3)已知一个数的几分之几是多少求这个数。

4.解答分数应用题的方法是什么?

抓住分率句;找准单位“1”;画图来分析;列式不必急。

三、巩固练习。

(一)应用题。

1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

(1)学生独立分析列式。

(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。

2.学校有故事书36本,是科技书的,科技书有多少本?

3.学校有故事书36本,科技书是故事书的,科技书有多少本?

(二)补充条件并列式解答。

一条路长15千米,修了全长的,_________________?

(三)选择正确答案。

1.修一条长240千米的公路,修了,修了多少千米?

2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

240×240÷150÷240240÷150。

(四)思考题。

四、课堂小结。

这节课我们进行了三类题的对比练习。解决这三类题的关键是什么?

五、课后作业。

(一)解答下面各题。

1.六一班有学生45人,其中女生有20人。女生人数占全班的几分之几?

2.六一班有学生45人,女生占.女生有多少人?

3.六一班有男生25人,占全班的.全班共有学生多少人?

(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

(三)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

六、板书设计。

分数乘除法对比练习。

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=。

2.池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

12×=4(只)。

3.池塘里有4只鹅,正好是鸭的只数的.池塘里有多少只鸭?

4÷=12(只)。

上海七年级册数学教案文案篇七

重点:邻补角与对顶角的概念。对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

教学设计。

一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题。

二、认识邻补角和对顶角,探索对顶角性质。

1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。

几何语言准确表达;。

有公共的顶点o,而且的两边分别是两边的反向延长线。

2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。

3学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系。

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4、概括形成邻补角、对顶角概念和对顶角的性质。

三、初步应用。

练习。

下列说法对不对。

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四。巩固运用例题:如图,直线a,b相交,,求的度数。

巩固练习。

教科书5页练习已知,如图,,求:的度数。

小结。

邻补角、对顶角。

作业课本p9—1,2p10—7,8。

上海七年级册数学教案文案篇八

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

上海七年级册数学教案文案篇九

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

上海七年级册数学教案文案篇十

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

上海七年级册数学教案文案篇十一

本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。

其中,可以表示一个数、一个字母,也可以是一个代数式.。

2.利用法则进行单项式和多项式运算时要注意:

3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;

设m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

这样过渡较自然,同时也渗透了一些代换的思想.。

教学设计示例。

一、教学目标。

1.理解和掌握单项式与多项式乘法法则及推导.。

2.熟练运用法则进行单项式与多项式的乘法计算.。

3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。

4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。

5.渗透公式恒等变形的数学美.。

二、学法引导。

1.教学方法:讲授法、练习法.。

类项,故在学习中应充分利用这种方法去解题.。

三、重点·难点·疑点及解决办法。

(一)重点。

单项式与多项式乘法法则及其应用.。

(二)难点。

单项式与多项式相乘时结果的符号的确定.。

(三)解决办法。

复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。

式乘单项式后符号确定的问题.。

四、课时安排。

一课时.。

五、教具学具准备。

投影仪、胶片.。

六、师生互动活动设计。

(一)明确目标。

本节课重点学习单项式与多项式的乘法法则及其应用.。

(二)整体感知。

(三)教学过程。

1.复习导入。

复习:

(1)叙述单项式乘法法则.。

(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。

(2)什么叫多项式?说出多项式的项和各项系数.

2.探索新知,讲授新课。

简便计算:

由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。

与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。

例1计算:

例2化简:

练习:错例辨析。

(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。

(四)总结、扩展。

(99,河北)下列运算中,不正确的为()。

a.b.。

c.d.。

八、布置作业。

参考答案:

上海七年级册数学教案文案篇十二

本课(节)课题3.1认识直棱柱第1课时/共课时。

教学目标(含重点、难点)及。

1、了解多面体、直棱柱的有关概念.

2、会认直棱柱的侧棱、侧面、底面.。

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。

教学重点与难点。

教学重点:直棱柱的有关概念.

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

内容与环节预设、简明设计意图二度备课(即时反思与纠正)。

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

1.多面体、棱、顶点概念:

2.合作交流。

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。

述其特征。)。

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)。

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固。

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的'相邻两条侧棱互相平行且相等。

4.学以至用。

出示例题。(先请学生单独考虑,再作讲解)。

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。

最后完成例题中的“想一想”

5.巩固练习(学生练习)。

完成“课内练习”

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计。

作业布置或设计作业本及课时特训。

上海七年级册数学教案文案篇十三

指导思想:

执教七年级数学有3人(七年级有6个班,一人带两个班),为了充分发挥集体的智慧,加强教师间的合作与交流,提高课堂教学效率,特制订此计划。

一、集体备课的目标任务。

1.通过备课活动,努力提高自身业务素质和教学水平。

2.优化教学过程,引导学生积极参与,训练学生的思维品质。

3.提高教育教学质量,培养学生的探索能力和创新能力。

4.在教学中推进“先学后教”课堂教学模式。

二、加大集体备课力度。

1.定时间、定地点。根据学校安排每周星期三下午为集体备课时间,地点在小会议室。

2.定内容。每次讨论的中心问题是下一周的新授课。

3.定中心发言人。期初将本期讲授内容分配到本组各位教师,每位教师只备他分配到的内容,形成讲学稿,这位教师就是下一次集体备课的中心发言人。

4.集体讨论形成最终教案。(注:每个人也可以根椐自己的特点增补内容,形成个性化教案。)。

5.具体安排。

全期任课教师集体备课任务如下:

三、加强教学研究。

1.进一步探究“先学后教”课堂教学模式的实施方法,结合我校实际初步形成科学高效的数学课堂教学模式.

2.继承我校教学优良传统即严谨教风,课堂上追求大容量高思维量,备课时特别重视精选习题,平时多测精讲,要把这一思想渗透到七年级每一位数学教师心中,在常规教学中有意识去执行。

3.扩大教师中的交流。一是多向本校名师学习,多听他们的课;二是走出去,向外校名师学习,领略外校名师风采,让每位教师努力有方向;三是老师之间互相听课,取长补短。

4.有目的地组织一些示范课、研究课,探讨不同类型课如何讲授效果最佳,最后归结成模式,加以推广。

四、要求教师加大学习的力度。

1.学业务知识、学专业知识,提升自己的水平,做到教学游刃有余。有计划地做中考题,提升自己解题水平。

2.熟练新教学手段在教学中的应用。

总之,提高课堂教学效益,需要教师认真备好每节课,上好每节课,全身心地投入到教书育人的事业中。

上海七年级册数学教案文案篇十四

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

上海七年级册数学教案文案篇十五

教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

非常高兴,能有机会和同学们共同学习

昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

(3) 一个数同0相加,其和有什么规律呢?(易得出结论)

同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

上海七年级册数学教案文案篇十六

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

上海七年级册数学教案文案篇十七

第1教案。

教学目标。

1.能结合实例,了解一元一次不等式组的相关概念。

2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点。

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法。

探索方法,合作交流。

教学过程。

一、引入课题:

1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2.由许多问题受到多种条件的限制引入本章。

二、探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。

上海七年级册数学教案文案篇十八

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

数轴的概念和用数轴上的点表示有理数。

教学过程(师生活动)设计理念。

设置情境。

教师通过实例、课件演示得到温度计读数.

(多媒体出示3幅图,三个温度分别为零上、零度和零下)。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。

教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律。

归纳结论。

问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)。

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

教科书第12页练习。

课堂小结。

请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业。

1,必做题:教科书第18页习题1.2第2题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
上海七年级册数学教案文案(模板18篇) 文件夹
复制