勾股定律北师大版数学初二教案(模板18篇)
文件格式:DOCX
时间:2023-12-14 16:55:20    小编:紫薇儿

勾股定律北师大版数学初二教案(模板18篇)

小编:紫薇儿

教案的编写要注意语言的精练、通俗易懂,便于教师理解和操作。如何编写一份完美的教案是每位教师需要思考和实践的问题。在教案范文中,我们可以看到教师如何设计教学活动,帮助学生达到预期的学习目标。

勾股定律北师大版数学初二教案篇一

课件出示:师:2002年世界数学家大会在我国北京召开,课件显示的是本届世界数学家大会的会标.会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图案来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)。

二、探究新知。

1.探究直角三角形三边长度的平方的关系.

课件出示如下地板砖示意图,引导学生从面积角度观察图形.

师:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

2.探索勾股定理.

师:由刚才归纳发现的结论,我们自然产生联想:一般的直角三角形是否也具有该性质呢?

勾股定律北师大版数学初二教案篇二

学生技能基础:学习本节之前,学生已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培养作好了充分准备.

活动经验基础:有了上一节的活动基础,学生对本节课主要采取学生分组交流、讨论、举例说明的学习方式有比较好的活动经验.

二、教学任务分析。

在上一节课的学习中,学生对命题的概念有了清楚的认识,但学生对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:

1.了解命题中的真命题、假命题、定理的含义;。

2.解命题的构成,能区分命题中的条件和结论。

3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.

4.培养学生的语言表达能力。

三、教学过程分析。

本节课的设计分为五个环节:回顾引入——探索命题的结构——思考探讨——读一读——课堂反思与小结.

勾股定律北师大版数学初二教案篇三

硫酸厂接到一批订单,急需一批浓度为60%的硫酸1200吨.厂长高兴地叫来生产科长告诉他快去准备.可生产科长一听就发愁了,说:“我们还有一大批浓度70%和浓度55%的硫酸,却没有浓度60%的硫酸,如果现在生产恐怕时间来不及了.”厂长一听就火:“我们已经订了合同,又收了人家的钱,如果到期交不了货,还得赔违约金,搞不好,这个月连工资都发不了,快去想想办法.”

生产科长愁眉苦脸回到车间.技术员小张忙过来询问发生了什么事.听科长一说,小张想了想,又拿出纸笔算了算,高兴地说:“科长,我们可以用现有的两种硫酸去配制呀!”“对呀,怎么我没想到呢?快来,我们仔细算一算.”

那么你知道这两种硫酸各需多少吨,才能配制成浓度为60%的硫酸1200吨吗?

勾股定律北师大版数学初二教案篇四

学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2、过程与方法。

(1)经历一般规律的探索过程,发展学生的抽象思维能力。

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、情感态度与价值观。

(1)通过有趣的问题提高学习数学的兴趣。

(2)在解决实际问题的过程中,体验数学学习的实用性。

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:

多媒体。

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。

情景:

第二环节:合作探究(15分钟,学生分组合作探究)。

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

第三环节:做一做(7分钟,学生合作探究)。

教材23页。

李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。

(1)你能替他想办法完成任务吗?

第四环节:巩固练习(10分钟,学生独立完成)。

2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。

第五环节课堂小结(3分钟,师生问答)。

内容:如何利用勾股定理及逆定理解决最短路程问题?

第六环节:布置作业(2分钟,学生分别记录)。

作业:1.课本习题1.5第1,2,3题.。

要求:a组(学优生):1、2、3。

b组(中等生):1、2。

c组(后三分之一生):1。

文档为doc格式。

勾股定律北师大版数学初二教案篇五

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

1、创设情境。

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界。

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论。

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

勾股定律北师大版数学初二教案篇六

1、平行线的性质定理的证明.

2、证明的一般步骤.

过程与方法。

1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.

2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.

情感与价值观。

通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.

教学重点。

证明的步骤和格式.

教学难点。

理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.

教学过程:

一、创设现实情境,引入新课。

节课我们就来研究“如果两条直线平行”.

二、讲授新课。

在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

同位角相等两直线平行,.

议一议。

利用这个公理,你能证明哪些熟悉的结论?

想一想。

(2)你能根据所作的图形写出已知、求证吗?

(3)你能说说证明的思路吗?

勾股定律北师大版数学初二教案篇七

4.如果一个实数的平方根与它的立方根相等,则这个数是()。

a.0b.正整数c.0和1d.1。

答案:a。

解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等。

分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.

5.有下列说法正确的是:()。

a无理数就是开方开不尽的数;b无理数是无限不循环小数;。

c带根号的数都是无理数d无限小数都是无理数。

答案:b。

分析:考察算术平方根的计算.

勾股定律北师大版数学初二教案篇八

本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.

二、教学任务分析。

本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节.具体内容是运用勾股定理及其逆定理解决简单的实际问题.当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力.

本节课的教学目标是:

1.通过观察图形,探索图形间的关系,发展学生的空间观念.

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

四、教法学法。

1.教学方法。

引导—探究—归纳。

本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

(1)从创设问题情景入手,通过知识再现,孕育教学过程;。

(2)从学生活动出发,顺势教学过程;。

(3)利用探索研究手段,通过思维深入,领悟教学过程.

2.课前准备。

教具:教材、电脑、多媒体课件.

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.

五、教学过程分析。

本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.

勾股定律北师大版数学初二教案篇九

1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小.

2.掌握估算的方法,形成估算的意识,发展学生的数感.

过程与方法。

1.能估计一个无理数的大致范围,培养学生估算的意识.

2.让学生掌握估算的方法,训练他们的估算能力.

情感态度与价值观。

让学生在合作探究中体会到成功的喜悦。

教学重点。

1.让学生理解估算的意义,发展学生的数感.

2.掌握估算的方法,提高学生的估算能力.

教学难点。

掌握估算的方法,并能通过估算比较两个数的大小.

教学过程。

一.导入新课。

同学们,请大家说出咱们班男生和女生的平均身高.你又是怎样得出结果的呢?

(我猜的.)。

“猜”字的意思就是根据自己的判断而估计得出的结果,它并不是准确值,但也不是无中生有,是有一定的理论根据的,本节课我们就来学习有关估算的方法.

二.讲授新课。

问题:某地开辟了一块长方形的荒地,新建一个以环保为主题的公园,已知这块荒地的长是宽的2倍,它的面积为400000米2.

(1)公园的宽大约是多少?它有1000米吗?

(2)如果要求误差小于10米,它的宽大约是多少?

(3)该公园中心有一个圆形花圃,它的面积是800米2,你能估计它的半径吗?(误差小于1米)。

(因为已知长方形的长是宽的2倍,且它的面积为40000米2,根据面积公式就能找到它们的关系式.可设公园的宽为x米,则公园的长为2x米,由面积公式得:

勾股定律北师大版数学初二教案篇十

平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等。

证明命题的一般步骤:

(1)根据题意画出图形(若已给出图形,则可省略)。

(2)根据题设和结论,结合图形,写出已知和求证;。

(3)经过分析,找出已知退出求证的途径,写出证明过程;(4)检查证明过程是否正确完善。

勾股定律北师大版数学初二教案篇十一

一、你怎样理解这四首诗所表达的感情?各用一句话概括。

二、“孤城”、“羌笛”、“杨柳”、“落日”是古诗中常见的意象,请你找出一些带有上述意象的诗句加以吟诵,说说这些意象在古诗中一般有什么意味。

_三、探究活动:你赞同以下说法吗?请你查找有关资料或网站,与同学展开辩论。

1、王之涣的《凉州词》首句有些版本作“黄沙直上白云间”。有人认为后人广为流传的“黄河远上白云间”是错误的,因为在凉州根本见不到黄河,只能见到黄沙。

2、有人说河西走廊距青海千里之遥,那里根本无法看到青海的云,王昌龄《从军行》把“青海长云”与“孤城”、“玉门关”放在一起是不合适的。

3、对于“属国过居延”,课文注解“属国”是官名,指使臣。另一种说法认为“属国”指的是附属国,这句诗是“过属国居延”的倒装。

四、读了楚楚的《草原散章》,请说说你的总体感受。

答:

勾股定律北师大版数学初二教案篇十二

 教学目标:

知识与技能目标:

1.探索并掌握平行线的性质;。

2.能用平行线的性质定理进行简单的计算、证明.

过程与方法目标:

2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.

情感态度与价值观目标:

1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系,体会科学的思想方法,激发学生探索创新精神.

l重点:

1.平行线性质的研究和发现过程;。

难点:

l教学流程:

一、情境引入。

1、同位角相等,两直线平行.

2、内错角相等,两直线平行.

3、同旁内角互补,两直线平行.

反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?

如图,直线a与直线b平行.

如图,直线a与直线b平行,被直线c所截.测量这些角的度数,把结果填入下表内.

勾股定律北师大版数学初二教案篇十三

学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.

学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.

二、教学任务分析。

学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:

1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.

2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.

3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.

勾股定律北师大版数学初二教案篇十四

学生的知识技能基础:经过前两节课的学习,学生已理解算术平均数和加权平均数的联系与区别,会求一组数据的算术平均数和加权平均数,能利用平均数解决实际问题。

学生活动经验基础:学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,体会到权的差异对平均数的影响,获得了从事统计活动所必须的一些数学活动经验,初步形成了动手实践、自主探索、合作交流的学习方式。

二、教学任务分析。

本节课的教学任务是:掌握中位数、众数的概念,多角度地认识“平均水平”,能根据所给的信息求出一组数据的中位数与众数。在具体情境中,能搞清平均数、中位数和众数三者的区别,并会选择恰当的数据代表对问题作出自己的正确评判;进一步发展学生的数学应用能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1.知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。

2.过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。

3.情感与态度:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度。

三、教学过程设计。

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入。

内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。下面请看一例:

某次数学考试,小英得了78分。全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。

引导学生展开讨论,作出评判:

平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的。原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。

怎样说明这个问题呢?我们需要学习新的数据代表——中位数与众数。

目的:一是复习平均数的概念与计算,同时说明有些数据利用平均数是反应不出问题的,为引入新的数据代表奠定基础。

二是根据学生的心理特征和认识规律,力求创设一种引人入胜的教学情景,

引起学生对“平均水平”的认知冲突,挖掘出趣味因素,最大限度地吸引学生积。

极投入新知识的学习。

勾股定律北师大版数学初二教案篇十五

(本课适合有条件使用计算器的学校)。

学生知识技能基础:学生在七年级上学期已经学习了《计算器的使用》,学会了使用计算器进行有理数的加、减、乘、除、乘方运算,掌握了计算器的基本使用方法.

学生活动经验基础:学生在七年级上学期已经学过了使用计算器进行简单的有理数的计算并利用计算器进行了一定的探索活动,积累了一些活动经验.

二、教学任务分析。

本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第5节,具体内容为:用计算器求平方根和立方根以及有关混合运算.经历运用计算器探求数学规律的活动,发展合情推理的能力.

为此,本课的教学目标是:

2.鼓励学生自己探索计算器的用法,经历运用计算器探求数学规律的活动,发展学生的探究能力和合情推理的能力.

3.在用计算器探索有关规律的过程中,体验数学的规律性,体验数学活动的创造性和趣味性,激发学习兴趣.

三、教学过程设计。

教学准备:每位学生一个计算器,并按计算器的类型分小组。

目的:便于使用相同计算器的学生进行讨论,共同学习。

勾股定律北师大版数学初二教案篇十六

1.认识二次根式和最简二次根式的概念.

2.探索二次根式的性质.

3.利用二次根式的性质将二次根式化为最简二次根式.

过程与方法。

1、经历二次根式的基本性质,运算法则的探究过程,培养学生从具体到抽象,从特殊到一般的抽象概括能力。

2、体验归纳、猜想的思想方法。

情感态度与价值观。

通过多种方法化简二次根式,渗透事物间相互联系的辩证观点。

教学重难点。

教学重点。

探索二次根式的性质。

教学难点。

利用二次根式的性质将二次根式化为最简二次根式.

勾股定律北师大版数学初二教案篇十七

1.初步体会观察、猜测得到的结论不一定正确.

2.通过探索,初步了解数字中推理的重要性.

3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.

【学习重点】。

判断一个结论正确与否需要进行推理.

【学习难点】。

理解数学推理的重要性.

学习行为提示:创景设疑,帮助学生知道本节课学什么.

学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.

教会学生落实重点.

先阅读教材第162页“做一做”之前的内容,然后完成书中设置的两个问题,最后与同伴进行交流.

【说明】让学生通过观察、实验、归纳等方法初步体会得到的结论不一定正确.

师生合作共同完成教材第162页“做一做”的学习与探究.

【说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法,培养学生从不同的角度来用不同的数学方法解决实际问题的能力.

勾股定律北师大版数学初二教案篇十八

如图,一个长方体长宽高如图所示,求从a点出发,沿长方体表面到达b点的最短路程长度。

这是一道标准的长方体路径最短问题,没有任何难度,我们可以得到以下三个路径:

图中红、绿、蓝色线分别表示三种不同路径,对应以下三个直角三角形的斜边:

只需要分别计算三个直角三角形斜边的长度,取其最短者即可。

那么这三个三角形中,先不计算的话,能不能知道哪一个的'斜边最短呢?这样的话,只需要计算这个最短的,以便在考场上节约时间。秒答君可以告诉您,以上三个直角三角形,蓝色的斜边最短,为什么呢?且看以下分析。

[解析]。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
勾股定律北师大版数学初二教案(模板18篇) 文件夹
复制