最新高一数学教学计划进度表(十四篇)
文件格式:DOCX
时间:2023-03-11 00:00:00    小编:毕上公考

最新高一数学教学计划进度表(十四篇)

小编:毕上公考

计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。那么我们该如何写一篇较为完美的计划呢?下面是小编带来的优秀计划范文,希望大家能够喜欢!

高一数学教学计划进度表篇一

本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生本事的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的成绩。

(一)情意目标

(1)经过分析问题的方法的教学,培养学生的学习的兴趣。

(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)本事要求

1、培养学生记忆本事。

(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示三角函数有关概念、公式和图形的对应关系,培养记忆本事。

2、培养学生的运算本事。

(1)经过概率的训练,培养学生的运算本事。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

(3)经过算法初步,1算法步骤2程序框图(起始框,确定框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算本事。

1、期中考前上好第一册(必修3),期中考后完成好必修4

2、抓好数学补差,培优活动各班在星期1或星期4的午时

3、立足于教材。

4、要求学生完成课后练习及每一章课后习题

5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。

6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。

7抓好竞赛辅导,时间定于周三、周四的提前时间,周六的午时1点到3点;任教教师:高一全体数学教师。

8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次;

9、上学期必修4的学分认定考试补考及落实工作;

10、响应学校教务处的备课计划安排,督促组员落实工作;

11、抓好团体备课

高一数学教学计划进度表篇二

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

3.1.1

<
<

方程的根与函数的零点

<
<

约1课时

<
<

10月25日

<
<

3.1.2

<
<

用二分法求方程的近似解

<
<

约2课时

<
<

10月26日27日

<
<

3.2.1

<
<

几类不同增长的函数模型

<
<

约2课时

<
<

10月30日

<
<

|

<
<

11月3日

<
<

3.2.2

<
<

函数模型的应用实例

<
<

约2课时

<
<

<
<
猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
复制