简易方程数学教学反思总结 简易方程解方程教学反思
文件夹
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结怎么写才能发挥它最大的作用呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。
1.学生能根据等式的基本性质解形如ax±b=c的方程,初步学会列方程解决一些简单的实际问题。
2.培养学生抽象概括的能力,发展学生思维灵活性,进一步提高学生的分析能力。
3.学生感受数学与现实生活的联系,培养学生的数学运用意识与规范书写和自觉检验的习惯。
掌握解形如ax±b=c方程的解法。
正确找出数量间的相等关系,列出方程。
一、复习铺垫:
1.解方程。
x-2.5=10 0. 4x=12 3.2+x=40
2.根据下列句子说出其数量间相等的关系。
1)女生比男生人数的3倍少10人。
2)这个月比上个月水电费的2倍多200元。
二、情景导入:
同学们见过足球吧?(出示1个足球)
(出示例1)一起观察挂图,问:图中的哪些信息是解决“共有多少块黑色皮?”这个问题所需要的?
三、探究新知:
1.师:要想知道黑色皮有多少块,就必须了解黑色皮的块数和白色皮的块数有什么等量关系?
老师可以用线路图表示帮助学生分析题中的等量关系。
2.请学生依据等量关系式列出方程;还有另外的学生找到另外的等量关系式,列方程。
3.师:大家依据不同的等量关系列出较复杂的方程,怎样解答呢?今天我们就来学习“稍复杂的方程”。(板书课题)
4.探究求解过程。
1)生:我们可以用“黑色皮的块数×2-4=白色皮的块数 ”这个等量关系式列方程,可以怎么解呢?
2)强调:把2x看作一个整体,先求出2x等于多少,再求出x等于多少。
3)最后求出 x=12,还要检验12是不是这个方程的解。(学生在黑板上展示解方程的步骤)
4)2x-20=4 这样的方程能转化成我们原来学过的简单的方程再解答吗?(在黑板上展示方程的解法步骤)
5)师:同学们真了不起,这几个同学解答较复杂的方程都是先转化成简单的方程,然后用学过的知识去解决。请同学们不要忘记,最后要检验结果是否正确。
5.大家在用方程解决问题的时候,有什么共同特点吗?步骤是什么呢?
(生答完特点后,师生共同总结列方程解决问题的步骤:
① 弄清题意,找出未知数用x表示;
② 分析、找出数量间的相等关系,列方程;
③ 解方程;
④ 检验并写答语。)
四、巩固拓展:
1.p66 第1题 解下列方程 3x+6=18 2x-7.5=8.5 16+8x=40 4x-3x9=29
2.p66第2题
五、全课总结:
本节课你有什么收获?
作业:p66 3
板书设计: 稍复杂的方程
例1 解:设共有x块黑色皮。
黑色皮块数x2-4=白色皮块数
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12块黑色皮。
课后小记:这节课由于有了前面的几节课对等量关系的训练,在根据老师出示的线段图,学生很快就找到了等量关系,列出了方程,方程的求解过程就是本节课的重点内容,一定要反复的请学生说,达到都会的结果。
《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:
x + 4 = 20
x = 20-4
依据运算之间的关系:一个加数等于和减另一个加数。
x + 4 = 20
x + 4-4=20-4
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
改革的原因(摘自教学参考书):
新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。
那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。
新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。
我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。
如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?
合理的做法应是设桃子每千克x元,从顺向思考,列出方程为2.53-5x=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5x+0.5=2.53之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-х=28,可是无法求解,所以又转成х+28=40。
很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5x+0.5=2.53 х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?
我们不难看出,根据现实情境列方程解决问题,x当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。
教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。
因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了
从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?
本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。
1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.
人教版五年级数学上册《解方程》教学反思
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。
而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。在教这单元之前,我一直困惑解方程要采用初中的“移项解题,还是运用书本的“等式性质解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项解题,学生对于这个概念或许不会系统清晰,但是“等式性质解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系老教材的方式改变,必有他的理由,能用吗?
困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。
2025年《简易方程》数学教学反思总结 简易方程解方程1教学反思(3篇)
文件夹