作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
知识与技能
结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。
过程与方法
通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
情感态度与价值观
通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
理解一个数乘分数的意义,掌握分数乘分数的计算方法。
推导算理,总结法则。
直观演示法
教学准备及手段 根据例题制作的挂图、投影片或多媒体课件。
教材第3页及相关教学内容”
1、计算下列各题并说出计算方法。
×4 ×4 ×14×
2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)
(一)一个数乘分数的意义
1.投影出示例题2。
(1)问题一:3桶水共多少升?
指名列出算式:12×3。
提问:你是怎么想的?
启发学生得出:求“3桶水共多少升?”就是求3个12l,也就是求12l的3倍是多少。(2)问题二:桶水共多少升?
指名列出算式:12×。
提问:根据什么列示的?
启发学生思考:桶就是半桶,求桶是多少升?就是求12l的一半是多少,也就是求12l的是多少。
(3)问题三:桶水共多少升?
指名列出算式:12×。
提问:你是怎么想的?
启发学生思考:求桶是多少?就是求12l的是多少。
2.结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?
12×表示12l的是多少:12×表示12l的是多少。
3.总结:一个数乘分数的意义。
一个数乘几分之几表示的是求这个数的几分之几是多少。
4.完成教材第3页“做一做”。
引导:这道题求吃了多少千克,也就是求3千克的是多少千克。
(二)分数乘分数的计算方法。
投影出示例题3。
李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。
1.问题一:种土豆的面积是多少公顷?
(1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?
(实际上就是求公顷的是多少公顷,列示是:×。)
(2)探究×的计算方法。
①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。
②再涂出公顷的。
引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。
③观察交流。
观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?
先让学生在小组内交流,在组织全班交流。
通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。
板书:×===(公顷)
2.问题二:种玉米的面积是多少公顷?
⑴学生独立列出算式:×
⑵提问:“×”等于多少呢?你能用颜色表示的吗?
⑶学生动手操作,交流计算方法和思路。
与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)
3.分数乘分数的计算方法。
先小组讨论,再汇报交流。
计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)
1.教材第4页“做一做”第1题。
这道题是有关一个数乘分数的意义的练习。
组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。
2.教材第5页“做一做”第2题。
这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。
组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。
3.教材第5页“做一做”第3题。
这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。
4.教材第6页“练习一”第4、5题。
先学生独立计算,并让学生说一说是怎么想的。
作业设计 练习二第3、4题。
板书设计 分数乘法
12×3
想:求3个12l,也就是求
12l的3倍是多少。⑴种土豆的面积是多少公顷?
12××===(公顷)
想:求12l的一半,就是求⑵种玉米的面积是多少公顷?
12l的是多少。×===(公顷)
12×分数乘分数,用分子相乘的积作分子,
想:求12l的是多少。用分母相乘的积作分母。
教学内容:课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:正确分析数量关系,找准单位1
教学难点:依题意正确画图教学过程:
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的,有40只黑羊。()?
1.出示例3。
小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
完成练习四的第6、7题。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
完成练习四的第8~10题。
教学反馈:
分数乘法
1、分数乘法的意义和计算法则:
课时:1课时。 总课时:1课时。执行时间:
课题:分数乘整数。
教学目的:
1、 使学生理解分数乘整数的意义;
2、 握分数乘整数的计算法则,并能够正确地进行计算。
3、 培养学生的学习兴趣。教具:多媒体教学课件。
教学过程():
一、 复习引入
1、 5个12是多少?怎么样列式?
算式:12+12+12+12+12=60或12×5=60
小结:求几个相同加数的和,可以用加法算,也可以用乘法算。
2、 计算:
2/7+2/7+2/7 3/10+3/10+3/10
(1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?
二、 尝试、探究
1、 分数乘整数的意义,
(1)学生说,教师板书:2/7×3 3/10×3
(2)学生交流。(3)教师强调意义。
2、 探究分数乘整数的计算法则,
(1) 学生试计算3/10×3,汇报交流,
方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.
(3)肯定学生想法,
课件演示【例1】看教本:
小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?
(1)学生审题, (2)引导学生看思考,
(2) 学生交流板书:
用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)
用乘法算:2/9×3=2×3/9=6/9=2/3(块)
答:3个人一共吃2/3块。
(4)小结计算法则:
三、 巩固练习
1、 做练习一的第1题。
2、 做一做,
四、 作业:第3、4题。
五、 后记:
教材第2页例1练习一1~3。
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
理解他数乘整数的意义,掌握分数乘整数的计算方法。
理解分数乘整数的计算方法。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的.:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
教材第8页例6、例7,做一做1~2,练习一5~11。
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
会计算分数混合运算,能利用乘法的运算定律进行简便运算。
根据题目特点,灵活地运用定律进行简便计算。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的要先算小括号里面的,再算中括号里面的。
3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
1/23+2/5
68-54
1/2(3/6-1/4)
1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
1/3/+1 1-5/21/学生独立完成,小组内订正。
2、分数混合运算
出示例题6:一个画框,长 米,宽 米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、学生独立列式或启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?