最新六年级下册圆柱的表面积讲解(八篇)
文件格式:DOCX
时间:2023-03-13 00:00:00    小编:梨园长

最新六年级下册圆柱的表面积讲解(八篇)

小编:梨园长

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇一

教学目标:

2、培养学生良好的空间观念和解决简单的实际问题的能力。

教学难点:运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽.

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

3. 理解圆柱表面积的含义.

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

① 侧面积:3.14×20×28=1758.4(平方厘米)

②  底面积:3.14×(20÷2)2=314(平方厘米)

5.小结:

三、巩固练习

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习七第6题。

板书: 

圆柱的侧面积=底面周长×高

②  底面积:3.14×(20÷2)2=314(平方厘米)

③        表面积:1758.4+314=2072.4≈2080(平方厘米)

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇二

一、学习目标:

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:

三、学习难点:

运用所学的知识解决简单的实际问题。

四、学习过程:

(一)、旧知复习

1、圆柱有几个面?分别是 、 和 。

2、底面是 形,它的面积= 。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 形。它的长等于圆柱的 ,宽等于圆柱的 。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

(二)列式为

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= ,所以圆柱的侧面积= 。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的 和 这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由 和 组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的 。需要注意的是厨师帽没有下底面,说明它只有 个底面。

列式计算:

① 帽子的侧面积=

② 帽顶的面积=

③ 这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

五、教学结束:

布置学生课下复习本节课内容。

【教材分析】

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

【学生分析】

学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

【教学目标】

1、掌握圆柱侧面积和表面积的概念。

2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

【教具准备】圆柱体纸盒、多媒体课件。

【学具准备】圆柱形纸盒。

【教学过程】

一、引入新课

1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

4、这节课我们就一起来研究“圆柱的表面积”这个问题。

二、探究新知

1、初步感知

(1)请同学们观察圆柱,想一想什么是圆柱的表面积。

(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

(3)圆柱的表面积怎么求?(两个底面积+侧面积)

(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

2、侧面积

(1)小组合作:

请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

(2)学生汇报

(3)教师总结演示。

(4)推导圆柱侧面积公式

3、表面积

(1)总结表面积公式

怎么求圆柱的表面积?

圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

侧面积:2×3.14×10×30=1884(cm2), 底面积:102×3.14=314(cm2) ,表面积:314×2+1884=2512(cm2 )

三、巩固练习

1、现在我们自己尝试来算一算这两个圆柱的表面积。

过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

四、总结收获

请记住同学们善意的提醒,这节课就上到这!

五、板书设计

圆柱的表面积

侧面积=底面周长×高

圆柱表面积= s侧=c×h=2πrh s表=2πrh+2πr2

底面积×2 =2πr2

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不 到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过 程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇三

1.直接写得数。

【合作探索】

1.圆柱的表面积指的是什么?

圆柱的表面积=+

3.圆柱的侧面展开是一个形,它的长等于圆柱底面的,宽等于圆柱的。

4.圆柱的侧面积怎样计算?

=长×宽

【学以致用】

1.求出下面圆柱的侧面积。

(1)底面周长1.6分米,高0.7分米。

(2)底面直径8厘米,高12厘米。

(3)底面半径3.2米,高5米。

2.求出下面圆柱的表面积。

(1)底面积40平方厘米,侧面积25平方厘米。

(2)底面半径2分米,高5分米。

3.你们见过压路机压路吗?压路机压路的面积与圆柱的有关,,前轮转动一周,实际求圆柱的。

完成课本第16页的第7题。

【拓展提升】

教学目标:

1.使学生理解圆柱侧面积和表面积的含义,掌握计算方法,并能正确地计算圆柱的侧面积和表面积。

2.在数学学习活动中获得成功的体验,建立自信心。

教学重点与难点:

1.表面积的计算。

教学用具:圆柱体侧面展开教具。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇四

圆柱是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个圆柱形状的笔筒需要多少材料。虽然学生已经学会了如何计算圆柱的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:笔筒的外形是什么样的?圆柱吗?计算所需材料的面积是否就是计算这个圆柱的表面积?做的笔筒没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《圆柱的表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决笔筒制作的问题来开展教学。

在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。当学生体验了知识的生成过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

二、教学目标:

1.使学生理解和掌握圆柱表面积的计算方法,能够正确计算圆柱的表面积。

2.使学生能够根据实际情况计算圆柱里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

三、教学活动过程:

(一)引导学生学习圆柱表面积的计算方法

1.回忆

2.联想:

3.归纳引入新课:

圆柱的一个侧面积加两个底面积的总面积就是圆柱的表面积。圆柱的表面积怎样求呢?这就是这节课的主要内容(板书课题)

4.教学例4

小结:这顶厨师帽的下面应该是没有的,所以在这里,不需要我们算圆柱的下面,也就是说少算一个底面。

(二)笔筒的制作问题

说明:我们已经学会了计算圆柱的表面积。在实际生产和生活过程中,有时不需要计算圆柱3个面的总面积,只需要计算某几个面的总面积,比如我们刚做的那道题,这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。

1.帮助学生回忆笔筒的形状(圆柱体,但是没有上面)

2.如何计算所需材料的面积?(就是求这个圆柱的表面积,但是要减去上面的面积)

3.课本第16页第10题:

(出示笔筒模型)

(1)笔筒缺少哪个面?(上面)

(2)要求至少需要多少彩纸,要算几个面的面积和?算不算上面?如何计算每一个面的面积?(2个面,没有上面,侧面=底×高,下面=一个圆的面积=π )

(3)指名学生板演,集体订正。

(点评:在教学中采用学生生活中较熟悉的物体“笔筒”启发学生如何计算制作一个笔筒所需材料的面积,也就是计算圆柱体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)

4、练习:课本p18页练习二的第15题。

(点评:要计算圆柱体某几个面的面积之和,关键是要知道如何计算圆柱每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)

《圆柱的表面积》的教学反思:

课上学生很快讨论出圆柱的表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱的侧面展开成长方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长     (宽)就是圆柱底面的周长,展开的长方形的宽(长)就是圆柱的高,因此,学生对于怎样求圆柱的表面积能够理解和初步掌握。

但是,通过学生尝试计算圆柱表面积的过程中,仍然存在许多问题,第一:学生对于圆柱的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周长的计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;第二:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的计算,这都是学生能够准确求出圆柱表面积的障碍。

针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三分钟计算的时间,加强学生的计算练习。总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇五

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

运用所学的知识解决简单的实际问题。

1、圆柱有几个面?分别是 、 和 。

2、底面是 形,它的面积= 。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 形。它的长等于圆柱的 ,宽等于圆柱的 。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= ,所以圆柱的侧面积= 。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。

②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的 和 这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由 和 组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的 。需要注意的是厨师帽没有下底面,说明它只有 个底面。

列式计算:

① 帽子的侧面积=

② 帽顶的面积=

③ 这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

布置学生课下复习本节课内容。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇六

学  习

目标

1、知道圆柱侧面积和表面积的含义。

2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

重点

难点

运用所学的知识解决简单的实际问题。

学      习      过      程

师生笔记

知识链接:

1、用公式表示出圆的半径、直径、周长、面积之间的关系。

2、圆柱的上下两个底面都是(       ),它们的面积(        )。

3、长方形的面积=        

长方体的表面积=                

正方体的表面积=         

知识超市 :

操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?

把圆柱的侧面沿高剪开,展开图是(        ),圆柱的底面周长就是它的(     ),圆柱的高就是它的(      )。

计算圆柱的侧面积实际就是计算(               )

圆柱的侧面积=

(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。

(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。

操作(二)有两底的圆柱展开后呈什么形状?

圆柱是由(          )和(          )三部分组成的。

圆柱的表面积包括(             )和(            )。

所以圆柱体的表面积=

(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积

我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的(         ),厨师帽由_________和__________组成。

列式计算:

达标检测:

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇七

p13-14页例3-例4,完成“做一做”及练习二的部分习题。

理解求表面积、侧面积的计算方法,并能正确进行计算。

能灵活运用表面积、侧面积的有关知识解决实际问题。

1.圆柱体有(   )个面,分别是(   )、(   )、(   )。

2.圆柱体上底和下底之间的距离,叫做(      ),有(    )条。

3.长方形面积=(    )×(    )

圆的周长=(            )    c=(       )

圆的面积=(            )    s=(       )

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

① 这两道题分别已知什么,求什么?

② 计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3. 理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①帽子的侧面积:3.14×20×28=1758.4(平方厘米)

②帽顶的面积:3.14×(20÷2)2=314(平方厘米)

③需要的面料:1758.4+314=2072.4≈2080(平方厘米)

5.小结:

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习七第6题。

【板书】: 

圆柱的侧面积=底面周长×高

例4:①帽子的侧面积:3.14×20×28=1758.4(平方厘米)

②帽顶的面积:3.14×(20÷2)2=314(平方厘米)

③需要的面料:1758.4+314=2072.4≈2080(平方厘米)

答:需要用2080平方厘米的面料。

六年级数学圆柱的表面积教案六年级圆柱的表面积教案篇八

1、理解圆柱体侧面积和表面积的含义。

2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

3、体验成功与失败的收获,体会合作的愉悦。

教学重点:

动手操作展开圆柱的侧面积

教学难点:

圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教学具准备:

圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

课前准备:

课前检查学生们做的圆柱体,明白他们在制作过程中所遇到的问题,并抽了其中几个比较典型的(做得好的和做得差的)学生说一说自己在制作过程中所遇到的问题和感受。

生1:我在做圆柱体的时候,先做好一个长方形,再做两个圆形底面,但底面做小了,盖不上。

生2:我在做圆柱体的时候,也是这么做的,两个底面又做大了,盖过了。

生3:我在做圆柱体的时候,不是他们这么做的,而是先做好两个面积相等的底面,并计算出它们的周长,再以它们的周长加一厘米(这一厘米用来粘贴)为长做一个长方形,最后把它们粘贴起来就是一个比较规范的圆柱体了。

生4:前两位同学没有注意到圆柱体的侧面展开是个长方形,这个长方形的长就是圆柱体的底面周长,所以在制作的时候一定要注意到这一点,要先做好两个面积相等的圆,在算出它的周长,并把这个长度作为长方形的长画出侧面,还要注意到留一点宽度来粘贴,这样就不会出现上面的问题了。

……

(课前准备点评:通过师生对话,了解中存在的问题及原因,并通过设疑激起学生主动参与的兴趣,为新授打下良好的基础。)

教学过程:

一、创设情境,引起兴趣。

师拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

二、自主探究,发现问题。

用自己喜欢的方式将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形?展开的形状可能是长方形、平行四边形、正方形等)

1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

3.操作活动:

(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?

独立操作后,与小组里的同学交流

4.小组交流,能用已有的知识计算它的面积吗?

5、小组汇报。

生1:我用的方法是测出圆柱的底面半径和高用s=πr2算出底面积,用s=2πrh求出侧面积,最后用侧面积+底面积×2,求出圆柱的表面积。

生2、我用的方法是测出圆柱的底面周长和高,用s=ch求出侧面积,r=   求出半径代入s=πr2求出底面积,最后用侧面积+底面积×2求出圆柱的表面积。

生3、我测的是圆柱的底面直径和高,我用s=πdh求侧面积,用r=   求出半径,再用s=πr2求出底面积,最后用侧面积+底面积×2求出圆柱的表面积。

(点评:学习任何知识的最佳途径是通过自己的实践活动去发现,因为这样发现理解最深,也容易掌握,学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学,我给了学生足够的时间去制作、测量都是学生的智慧,然后让学生互助去探究,去发现、去总结,给每个学生参与数学活动的机会,真正使学生在动手中学习,在动手中思维,学习主人翁的地位充分展现,学生测出不同条件求圆柱的表面积,方法都较好。可见,给学生学习留足探究的空间,能为学生的个性化学习提供广阔的学习空间,使活动真正自主开放。同时,让学生体验知识的应用过程,感受成功的喜悦。)

6、师提出:如果侧面展开是平等四边形呢?

学生动手操作也得出了同样的结论。

(点评:因为刚才是让学生用自己喜欢的方式剪开的,所以可能会出现这种情况,此时可以让有关同学介绍一下他的剪法。)

7、请大家试着求出自己手中圆柱的表面积。(集体交流)

三、利用所学知识解决实际问题

1、教学例一。

①出示例一

②尝试练习

③小结

④反馈练习:完成做一做第1题。

2、圆柱的表面积公式运用

(1)教学例二

①出示例二

②学生尝试解答

(教师巡视)

③多人板演,选一人说出想法。

侧面积:2×3.14×5×15=471(平方厘米)

底面积:3.14×5×5=78.5(平方厘米)

表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米.

(2)教学例3.

①出示例3

②齐读例题

师:读题之后,你有什么想对同学们说的?

③多人板演,一人说想法

水桶的侧面积:3.14×20×24=1507.2(平方厘米)

水桶的底面积:3.14×(20÷2)

=3.14×10

=3.14×100

=314(平方厘米)

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

3、介绍“进一法”

4、比较“四舍五入”法与“进一法”有什么不同。

师:通过刚才老师的讲解,你觉得“四舍五入”法与“进一法”有什么不同。

四、巩固练习

(一)求出下面各圆柱的侧面积.

1.底面周长是1.6米,高是0.7米

2.底面半径是3.2分米,高是5分米

(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)

五、课堂小结

六、课后作业

板书设计:

圆柱体的表面积

圆柱的侧面积 = 底面周长×高 → s侧=ch

↓↑↑

长方形 面积 = 长× 宽

圆柱的表面积 = 圆柱的侧面积+底面积×2

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制