作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
教学重难点
教学重点:
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:、;
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,s=;
②部分看:四块面积的和,s=.
总结:通过以上探索你发现了什么?
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置
2.理解并掌握完全平方公式,并能进行计算.(重点、难点)
计算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述计算,你发现了什么结论?
探究点:完全平方公式
利用完全平方公式计算:
(1)(5-a)2;
(2)(-3-4n)2;
(3)(-3a+b)2.
解析:直接运用完全平方公式进行计算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3-4n)2=92+24n+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
变式训练:见《学练优》本课时练习“课堂达标训练”第12题
如果36x2+(+1)x+252是一个完全平方式,求的值.
解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
利用完全平方公式计算:
(1)992; (2)1022.
变式训练:见《学练优》本课时练习“课堂达标训练”第13题
若(x+)2=9,且(x-)2=1.
(1)求1x2+12的值;
(2)求(x2+1)(2+1)的值.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )
a.a2-b2=(a+b)(a-b)
b.(a-b)(a+2b)=a2+ab-2b2
c.(a-b)2=a2-2ab+b2
d.(a+b)2=a2+2ab+b2
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
变式训练:见《学练优》本课时练习“课后巩固提升”第10题
本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
知识与技能:
(2)了解完全平方公式的几何背景.
数学能力:
(2)发展学生的数形结合的数学思想.
情感与态度:
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
第二环节:验证(a+2)2=a2–4a+22
第三环节:推广到一般情况,形成公式
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
展示动画,用几何图形诠释完全平方公式的几何意义.
第五环节:进一步拓广
第六环节:总结口诀、认识特征
(a–b)2=a2–2ab+b2
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
第九环节:学生pk
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
第十一环节:布置作业:
课本p43习题1.13
《完全平方公式》是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,而且公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,是从一般到特殊的认知规律的典型范例.通过对公式的学习来简化某些整式的运算,为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础.因此,完全平方公式在初中阶段的教学中具有很重要地位。
本节课对应的课标要求是让学生了解公式的几何背景,能推导验证公式的准确性,并会利用公式进行简单计算。经历从“数”与“形”两个角度解决问题的过程,体会数形结合的思想。经历探究解决简单问题的过程,提高学生分析问题和解决问题的能力,发展应用意识。
八年级的学生年龄基本都在十四岁左右,正处于活泼好动的青春期中期。此阶段的学生,个人意识增强,渴望归属感和被认同。如果课堂气氛沉闷单调,他们也会较快的感到疲劳烦躁。针对学生的心智特征及本课实际,我以“引”为主,主要采用启发引导,合作交流的方式展开教学,引导学生主动参与到教学过程中来建构知识。
1、问题引入策略:通过提出问题,激发学生学习的兴趣和求知欲,创设宽松活泼的课堂教学气氛,维持学生学习的动机。
2、自主学习策略:学生通过自己观察、思考,促进思维的深层次加工和提高课堂参与度。
3、引导探究策略:学生通过小组合作,推导验证公式,充分发挥学生的主体作用。
4、类比启发策略:在完成教学要求的基础上,通过解决与生活实际紧密联系的问题情境,巩固提高学生运用公式解决生活问题的能力。
知识和技能:
1、经历探索完全平方公式的过程,进一步发展符号感和推理能力;
3、了解完全平方公式的几何背景。
过程和方法:
1、在学习的过程中使学生体会数形结合的思想;
2、经历公式的验证,进一步发展符号感和推理能力,培养学生数学建模的思想。情感态度和价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。
项目内容解决措施
师:班班通展示问题,层层设问,引导学生解决实际问题,并关注学生情况。
生:在教师引导下思考并解决问题利用生活情景引入,消除学生的陌生感,激发学生的学习兴趣,体会数学来源于生活。
活动二:深入问题,合作探究2、计算下列各式,你能发现什么规律
(1)(p+1) =(p+1)(p+1) = xxxx;
(2)(m+2) = xxxx;
(3)(p-1) = (p-1)(p-1)=xxx;
(4)(m-2) = xxxxx.
(5)(a+b) =xxxxx;(a-b) =xxxxxxx.在教师的引导下,学生独立完成解题,观察并找出式子的规律让学生体会到完全平方公式是乘法公式的特例,因应用广泛,计算简捷,故作为公式学习。
3、猜想?你是怎样推导的呢?还有其他证明方法吗?
生:用代数的方法验证公式的准确性继续让学生体会到完全平方公式是乘法公式的特例化未学为已知,体会数学中的化归思想。
活动三:结构分析,建构新知4、完全平方公式:
师:引导学生观察公式的左右边,进一步挖掘公式的结构特征教师在学生的发言过程中进行逐步归纳。
活动四:范例分析,深化新知例1、用完全平方公式计算下列各题,并指出谁可以看作公式中的a、b。
(2)仔细阅读例1,注意以下问题:
活动五:尝试练习,拓展提升
7、下面各式的计算结果是否正确?如果不正确,应当怎样改正(1)(2)(3)(4)
8、活用公式:
9、你能用几种方法运用完全平方公式计算(1) (2)例2、运用完全平方公式计算:(1)102(2)99师:抢答题,看谁的反应快生:在抢答后小结套用公式的注意事项师:引导学生一题多解并关注学生的书写的规范性。
生:灵活运用公式解题及时练习巩固应用在例题、练习的基础上变式,加深学生对所学知识的理解渗透一题多解的数学思想,发散学生数学思维。多层面多方位考察完全平方公式,加深理解。
a、b可以表示数,单项式或多项式。
3、数学思想:体会数学中的一题多解,数形结合思想,化归思想,整体代入思想.教师引导学生总结回顾学习内容,帮助学生学习归纳反思。并关注不同层次学生对本节知识的理解、掌握程度。学生自己总结,互相补充。通过学生的自评与反思,有助于学生养成整理知识的习惯,有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。同时又有利于及时调整教学策略,为下节课的教学打下伏笔。
活动七:布置作业,自我评价
1、必做题:课本第112页
2 、3(1)(3)2、选做题:课本第112页
3(2)(4)、4、7教师精选习题,布置作业学生课外独立完成作业。课后作业是对课堂所学知识的巩固,提高、延续和补充。
预测:
(1)这节课倡导了以学生为主,教师为辅的思想,留足了一定的时间让学生去发现探索、以及做练习,学生学习效果明显。
(2)采用了多媒体辅助教学,以较清晰的手段呈现了学生整个学习过程,让课堂更加直观明了,同时容量也增大了。
一、学生学情分析
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(2)发展学生的数形结合的数学思想.
情感与态度:
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
第二环节:验证(a+2)2=a2–4a+22
第三环节:推广到一般情况,形成公式
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
第五环节:进一步拓广
第六环节:总结口诀、认识特征
(a–b)2=a2–2ab+b2
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
第九环节:学生pk
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
第十一环节:布置作业:
课本p43习题1.13
1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
2、会用完全平方公式进行运算。
会用完全平方公式进行运算
探索讨论、归纳总结。
一、回顾与思考
活动内容:复习已学过的平方差公式
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
二、情境引入
活动内容:提出问题:
一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
三、初识完全平方公式
活动内容:
1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
四、再识完全平方公式
活动内容:例1用完全平方公式计算:
2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
五、巩固练习:
1、下列各式中哪些可以运用完全平方公式计算。
1、6完全平方公式:
一、学习目标
2、了解完全平方公式的几何背景
二、学习重点:会用完全平方公式进行运算。
三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。
四、学习设计
(一)预习准备
(1)预习书p23—26
(2)思考:和的平方等于平方的和吗?
1、6《完全平方公式》习题
1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。
《1、6完全平方公式》课时练习
1、(5—x2)2等于;
答案:25—10x2+x4
解析:解答:(5—x2)2=25—10x2+x4
2、(x—2y)2等于;
答案:x2—8xy+4y2
解析:解答:(x—2y)2=x2—8xy+4y2
3、(3a—4b)2等于;
答案:9a2—24ab+16b2
解析:解答:(3a—4b)2=9a2—24ab+16b2
教学重点:
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
课件
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:、、、;
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,s=;
②部分看:四块面积的和,s=.
总结:通过以上探索你发现了什么?
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置