最新初三数学几何辅助线解题技巧(3篇)
文件格式:DOCX
时间:2023-03-13 00:00:00    小编:新疆金标尺

最新初三数学几何辅助线解题技巧(3篇)

小编:新疆金标尺

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

初三数学几何辅助线解题技巧篇一

(1)见弦作弦心距。有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角。在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径。命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线。对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

(5)两圆相交作公共弦。对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

来源:用考网

小编精心为您推荐:

初三数学几何辅助线解题技巧篇二

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:

(1)在梯形内部平移一腰;

(2)梯形外平移一腰;

(3)梯形内平移两腰;

(4)延长两腰;

(5)过梯形上底的两端点向下底作高;

(6)平移对角线;

(7)连接梯形一顶点及一腰的中点;

(8)过一腰的中点作另一腰的平行线;

(9)作中位线。

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

初三数学几何辅助线解题技巧篇三

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线;

(2)过顶点作对边的垂线构造直角三角形;

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;

(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
复制