最新考研高数范围 数学高数范围
文件夹
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
第一章
1.等价无穷小的定义,无穷小的比较;
2.利用等价无穷小替换,无穷小与有界函数的乘积仍是无穷小,分子分母有理化,两个重要极限求函数的极限;
3.函数在一点处的连续性,及间断点类型的判定。
第二章
1.利用函数在一点处导数的定义求极限,函数在一点处的可导性;
2.显函数的一阶及二阶导数,抽象函数的微分,隐函数的一阶导数及微分,曲线(隐函数,参数方程)在一点处的切线方程及法线方程;
3.连续与可导,可微的关系。
第三章
1.利用罗尔定理证明含的等式;
2.洛必达法则求极限;
3.函数取极值的必要条件,充分条件,求函数的单调区间与极值,曲线的凹凸区间与拐点;
4.利用函数的单调性证明不等式;
5.计算显函数在一点的曲率。
第四章
1.原函数及不定积分的的定义,微分运算与积分运算的关系;
2.利用直接积分法,第一类换元积分法,第二类换元积分法(根式代换),分部积分法求不定积分。
第五章
1.积分上限函数的导数;
2.利用第一类换元积分法,第二类换元积分法(根式代换),分部积分法求定积分;
3.利用定积分的对称性求定积分;
4.判断无穷限的反常积分的收敛性。
第六章
1.在直角坐标系下计算平面图形的面积,旋转体的体积。
第七章
1.计算可分离变量的微分方程满足一定初始条件的特解。
高等数学考试范围
一。数、极限、连续
1.主要内容:函数的概念、复合函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、函数极限的性质、两个重要极限、极限存在准则(夹逼准则和单调有界准则)、无穷小的比较、函数连的概念、间断点及基本类型、闭区间上连续函数的性质(最大值、最小值、零点、介值定理)。
2.重点:函数的概念、复合函数的概念、基本函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、求函数极限、连续的概念性质及应用。
3.难点:极限的∑-n、∑-δ定义,等价无穷小求极限。
二。函数微分学
1主要内容:导数与微分的概念,导数与微分的概念,导数的几何意义,函数求导与连续的关系,导数的四则运算及求法(复数函数求导,隐函数求导,参数式求导及求高阶求导)。罗尔、拉格朗日、柯西中值定理、函数中值定理的概念,用导数判断函数的单调性及单调区间,求极值、拐点、判断凸凹性,弧微分及曲率。
2重点:导数与微分的概念,导数的几何意义及应用,导数的四则运算及求法,罗尔和拉格朗日中值定理及应用,导数判断函数的单调性,导数求函数的极性、最值、拐点及判断其凹凸性。
3难点:求导数及用导数研究函数的性态。
三。一元函数积分学
1主要内容及重点:不定积分及定积分的概念与性质,不定积分的基本公式(22个),定积分与不定积分的换元性和分部积分法,定积分的应用(求面积、体积、平面曲线与弧长、变力做功、液体的压力、引力)牛顿?莱布尼茨公式。2难点:广义积分定积分的应用。
四:向量代数与空间解析几何
1主要内容:空间直角坐标系;向量的概念及其表示,向量的运算(线性、点乘、叉乘、混合乘),单位向量,方向余弦,向量的坐标表示及用坐标进行向量运算、向量的夹角。平面方程(点法式、般式、截距式、两点式)及基本法,直线方程(对称式、参数式、一般式)及其求法,曲面方程的概念及几种曲面,直线、平面位置关系的判定、点到平面的距离。
2重点:空间直角坐标系,向量的概念及其表示向量的运算及其用坐标表示,平面方程、直线方程及求法,几种曲面(椭球面、双曲面,抛物面),直线,平面位置关系的判定。
3难点:向量的叉乘法,用平面、直线的位置关系解决有关的问题,曲线、曲面的投影。
五。多元函数的微分学。
1主要内容及重点,多元函数的概念,偏导数,全微分的概念,一阶偏导数的求法(复合函数、隐函数等)全微分及高阶导数的求法,多元函数的极值和条件极值的概念和求法,方向导数和梯度,偏导数的应用(求空间曲线的切线、法平面、曲面的切面、法线)。
2难点:复合函数、隐函数求导及高阶偏导,求条件极值。
六。多元函数积分学
1主要内容及重点:二重积分,三重积分的概念性质及计算。
2难点:三重积分的计算。
1.高等数学(微积分)。这部分我用的同济大学的高等数学,一共两册,是很不错的教材。一章 函数与极限。
这一章前面要熟悉几个常见初等函数的图形。反双曲正弦等我没看,个人觉得看不看无所谓。用定义证明极限大纲是不要求的,但是这部分例题应该看看,对理解极限的定义有好处,而极限的定义是选择题爱考的知识点。一致连续性这节大纲不要求。
二章 导数与微分
这章相对简单。由参数方程所确定的函数导数,相关变化率不考,微分近似计算不考。三章 中值定理与导数应用
这一章比较难,但也是考试重点,主要是证明题。几个中值定理理解起来并不困难,但是运用起来会有困难,所以得多做题目练练,这几个定理要学会证明。泰勒公式可能开始看起来比较抓狂,其实这个证明考试应该不会考,太复杂。但是这个公式十分重要,要学会应用,而且应用起来并不困难,所以一定要掌握。后面的曲率,方程近似解都不考。(另外书中凡是有关工程应用的例题和习题都不用看)
四章 不定积分
这部分书上给的习题并不难,要好好做,全书上的一些题目到很让人抓狂。有理函数的积分好像大纲已经不要求了,10年全书上还留着,可以看看,对计算一些积分有好处。积分表大纲是不要求的。
五章 定积分
这章很重要,变限积分经常考。要搞清楚变限积分,不定积分,定积分的区别。什么样的条件下有原函数,什么条件下可积,可积和原函数存在是没有关系的。可能刚开始看的时候会有些混,仔细看书不要慌,后面的复习也会复习到的。第五节 反常积分的审敛法 γ函数大纲是不要求的。但是我要说说γ函数,当时我没有认真看真有点悔,这个函数在概率统计里很有用。
六章 定积分的应用
数三考的内容只有:平面图形面积计算 旋转体体积计算平行截面面积为已知立体体积计算(这部分经济数学教材给的例子比较好)
七章 向量代数与空间解析几何(数三不要求)
八章 多元函数微分学
这一章我开始时看的十分抓狂,特别是复合和隐函数的情形。但是弄懂后这章出的题目并不难,所以要多做几个题目找点感觉,才能知道自己的理解错在哪里。不考的主要内容有:全微分近似计算 多元函数几何应用 方向导数与梯度 二元函数泰勒公式 最小二乘法。
九章 重积分
这部分只考二重积分,重点就是计算二重积分,基本上每年都有一个大题,一定得学会算各种二重积分,会用计算技巧(奇偶性,对称性。计算很重要)
十章 曲线 曲面积分(数学不要求)
十一章 无穷级数
这章近两年都没考大题,可能主要是数三四合并的原因,但这章仍然很重要。开始看可能也有些难度,求和函数要自己动手多做做题。不考的内容有:柯西审敛原理; 正项级数中的根值法09大纲删了,但我想这个是可以用的 ;求和函数中数项级数求和09删了; 函数幂级数展开式应用 ;函数项级数一致收敛性…; 傅立叶级数。
十二章 微分方程与差分方程
工程数学没有差分方程,但是这整章内容都比较简单,个人觉得直接看复习全书就可以了。
2.线性代数。这部分的教材我依旧用的同济大学的工程数学,和经济类的数学差别并不大。只有向量空间和线性空间与线性变换不用考。线性代数内容比较抽象,逻辑性比较强。但是它是三门中学起来最简单的一门课,要注意前后知识点的联系,永乐大帝就是这么教我们的。
3.概率论与数理统计。这部分的书我都没认真看,开始总觉得时间还多就晃晃悠悠的看,后来觉得该快点看完就赶着看了,其实也有学数学学疲了的原因。概率论这部分学刚开始学起来应该比较困难,可能觉得比微积分难,因为这是数学中一种全新的研究方法。但是书一定得好好看,这部分内容看明白它的研究方法和明白它的各种模型后就觉得不是那么难了。经济数学教材中主要有区间估计和假设检验不考,09年删除的;线性回归分析…不考。阶段二 听了一个数学基础班
当时有个朋友帮我搞到了不少辅导班的视频,当时心中甚喜。可是这个班听完并未给我太大的帮助,数学主要是靠自我思考和动笔做题的。我承认当时有思维上的惰性,听课比想破脑袋搞那些自己不会的题要安逸的多。我想告诉大家的是不要被那些什么导学班,基础班乱七八糟的弄混头脑。他们不可能想高中老师那样手把手的教你,然后给你布置相应的题目,再给你讲解还要搞考试,所以也不会有高中那样的效果。
阶段三 做了基础过关660题
我觉得这是个失误。当时我并没有看复习全书,看到书上的基础过关,想必在全书前做就可以了。其实这个“基础”并不是那个“基础”,大概是题型是填空选择的意思,或者主要是对考研基础知识点的考查吧。总之这个难度是不亚于真题的,所以不建议看完书后直接就做这个。
阶段四 李永乐复习全书
我的全部数学资料都是李永乐的,因为我觉得这个老师十分认真耐心和负责。关于复习全书,我觉得我的做法也值得商榷,我一上来就拿笔做了起来。虽然还是有一部分题目我会做,但这无疑是个耗时而痛苦的过程。我搞了差不多三个月才搞完,而且概率论部分实在是做不下去了就直接看完了。最终不少东西我还是不会的,但时间消耗了不少。所以我认为对于数学基础不好的,看全书时大抵是可以先认真看一遍的(当然也要适当动动笔),第二遍再把大部分掌握不太好的题目做做。其实全书的难度还是比真题难不少的,题目不会做很正常。但是后面给的习题一定要好好做,很接近真题难度。
阶段五 听了强化班翻了翻复习全书
开始听强化班是想把知识快速过一遍,但看完全书后真是有点脑袋不想想问题了的感觉。后来花了整整三天听了高数的一个强化班,开始感觉还好,后来又不想听课又不想看别的就茫然的撑着把课听完了,没有多大收获,除了做了点笔记。后来我就主要看别的科目,减少的数学的时间。后来在论坛上看到别人发帖子说某某老师的高数讲的不错,正好我有他的视频就试听了一下,结果还真是觉得有帮助,但由于时间有限我只把自己比较差的章节听了听。线代当然是听的李永乐的,这个毋庸置疑,讲的特别不错,概率课还行吧。总之对于辅导班吧,我觉得数学强化班还是有一定的帮助,前提是你复习的还行了但是还觉得有些混。另外对于不同的人选择是不同的,听不听都行,如果你自己可以学的很投入可以想清楚那些问题,那应该比老师讲的效果更好。总之辅导班不是提高数学的充分条件,自己思考同样可以达到目的。
阶段六 做真题
我做真题比较散漫,好多都没按3个小时的时间来做。这很不好,我觉得。我后来没什么时间做模拟题,只做了真题。总之我觉得大家应该早点把真题做了,然后再结合不懂的翻翻全书,这样比较好吧。关于模拟题,我觉得也是应该做的,模拟题一般比真题难,也要制造一种考试的氛围去模拟。对大多数人来说考试时时间真的是挺紧的。
总结一句就是:多思考,多动笔,重计算,重速度。
希望我的这些经验教训能给基础薄弱的同学一些帮助,一些警示。不要怕数学,一定要坚持下去!
《高等数学》精品课程
支 撑 材 料(二)
贵州大学 2006年6月
支撑材料目录
一、课程简介
二、《高等数学》教学大纲
三、示范教学用课件及教案
四、教学改革项目
1、贵州省高等教育面向21世纪教学内容和课程体系改革计划项目。
五、教学改革论文
1、向淑文等,数学教学方法、手段及考评内容和方法的研究与创新,《发展创新改革-世行贷款二十一世纪初高等理工科教育教学改革项目结题成果汇编》,教育部高等教育司编,高等教育出版社,pp.51-55。
2、周国利、王锡贵,加强素质教育,提高教学质量,贵州工业大学学报(社会科学版),1999.9,pp.33-334。
3、明祖芬、韦维、张大凯,计算方法课件写作介绍,贵州大学学报(自然科学版),1998.11,pp.276-279。
4、黄敏,数理统计在试卷分析中的应用,玉溪师范学院学报,2004年第3期,pp.10-13。
5、明祖芬,参数方程所确定的函数的高阶导数的一种逐次求导法,贵州大学学报,2001.3,pp.218-220。
6、明祖芬,谈谈数值分析课的教学与课件写作,贵州大学学报,1997.7,pp.72-74。
7、彭长根、蔡绍洪、樊玫玫,任登鸿,基于internet的实验室评估系统的设计与实现,贵州大学学报,2004.8,pp.307-312。
8、胡尧,罗文俊,改进gauss消去法求解线性方程组,贵州大学学报,2004.5,pp.127-131。
9、周永辉,中国工科微积分学教材发展史上的“两个移植”,贵州师范大学学报,2001.2,pp.64-68。
10、周永辉,加强数学教育管理与研究,提高数学教学质量,贵州教育学院学报,2000.8,pp.76-80。
六、学术论文
1、jian yu、shu-wen xiang,the stability of the set of kkm points,nonlinear analysis 54(2003)839-844
2、shuwen xiang、yonghui zhou,on essential sets and essential components of efficient solutions for vector optimization problems,.315(2006)317-326
3、shu-wen xiang、gui-dong liu、yang-hui zhou,on the strongly essential components of nash equilibria lf infinite n-person games with quasiciconcave payoffs, nonlinear analysis 63(2005)e2639-e2647
4、yong-hui zhou , shu-wen xing , and hui yang , stability of solutions for ky fan’s section theorem with some applications , nonlinear analysis 62(2005)1127-1136
5、 , , continuity properties of solutions of vector optimizations , nonlinear analysis 64(2006)2496-2506
6、wei wei and , optimal control for a class of nonlinear impulsive equations in banach spaces, nonlinear analysis 36(2005), e53-e63.7、weiwei and , global solvablity for a singlar nonlinear maxwell’s equations, communications on pure and applied analysis,4(2005), 431-444.8、wei wei、hong-ming yin ,numerical solutions to bean’s critical-staye
model
for
type-ⅱ of superconductors,inyernational journal numerical analysis and modeling, 2(2005)473-488
七、教学成果及有关获奖证书
1、周国利,贵州省高等学校教学名师证书,贵州省教育厅,2003.7.2、周国利,1999贵州省普通高等学校教学管理先进个人,贵州省教育委员会,1999.6
3、杨辉、胡支军、向淑文、刘真祥、黄敏,开展数学建摸教学、促进大学数学教学改革,贵州省高等教育教学成果奖省级二等奖,贵州省教育厅,2001.12
4、明祖芬、韦维,“计算方法”课课堂教学现代化的探索与实践,省级三等奖,贵州省教育厅,2001.8
5、明祖芬,坚持教学改革、努力提高教学质量,校级优秀教学成果一等奖,贵州大学,1991.11.6、明祖芬、韦维,计算方法课件写作,理工学院优秀教学成果优秀奖,贵州大学理工学院,2000.10.7、贵州大学理学院,全国高等学校教学研究会数学学科委员会单位委员,全国高等学校教学研究会,2003.7.8、向淑文,全国大学生数学建模竞赛优秀组织工作者,全国大学生数学建模竞赛组委会,2001.9、杨辉,全国大学生数学建模竞赛优秀指导教师,全国大学生数学建模竞赛组委会,2001.10、胡支军,全国大学生数学建模竞赛优秀指导教师,全国大学生数学建模竞赛组委会,2001.11、舒亚东、万亚兵、舒勇,2005年高教社杯全国大学生数学建模竞赛甲组一等奖,教育部高等教育司、中国工业与应用数学学会,2005
12、张亚军、常江、王耀星,2005年高教社杯全国大学生数学建模竞赛甲组二等奖,教育部高等教育司、中国工业与应用数学学会,2005
13、常江等,2005年高教杯全国大学生数学建模竞赛甲组二等奖,教育部高等教育司、中国工业与应用数学学会,2005
14、崔巍等,2004年高教社杯全国大学生数学建模竞赛甲组二等奖,教育部高等教育司、中国工业与应用数学学会,2005
15、学生:杨应明、邓一斌、侯先培,指导教师:戴佳佳等,2003年全国大学生数学建模竞赛二等奖,教育部高等教育司、中国工业与应用数学学会,2003
16、学生:王晓娟、徐喜虹、李再弟,指导教师:杨光惠等,2003年全国大学生数学建模竞赛二等奖,教育部高等教育司、中国工业与应用数学学会,2003
17、田玉莲等,2002年高社杯全国大学生数学建模竞赛二等奖,教育部高等教育司、中国工业与应用数学学会,2002
18、胡思贵、陈昌恒、徐凤美,2001年全国大学生数学建模竞赛二等奖,教育部高等教育司、中国工业与应用数学学会,2001。
19、学生:罗小林等,指导教师:胡支军,2001年全国大学生数学建模竞赛贵州赛区二等奖,中国工业与应用数学学会、全国大学生数学建模竞赛组委会,2001 20、陈杰等,2001年全国大学生数学建模竞赛二等奖,教育部高等教育司、中国工业与应用数学学会,2001
21、学生:张仕学、夏仁强、曾斌,指导教师:胡支军,2000年网易杯全国大学生数学建模竞赛贵州赛区一等奖,全国大学生数学建模竞赛贵州赛区组委会、中国工业与应用数学学会,2000
22、学生:李进宇等,指导教师:胡支军,2000年网易杯全国大学生数学建模竞赛贵州赛区一等奖,全国大学生数学建模竞赛贵州赛区组委会、中国工业与应用数学学会,2000
23、学生:陈明庆等,指导教师:杨辉,99年创维杯全国大学生数学建模竞赛联合赛区二等奖,中国工业与应用数学学会,1999
24、学生:何光发等,指导教师:胡支军,1998年全国大学生数学建模竞赛联合赛区一二等奖,中国工业与应用数学学会,1998
25、学生:唐云飞等,指导教师:杨辉,1998年全国大学生数学建模竞赛联合赛区一二等奖,中国工业与应用数学学会,1998
26、学生:左建军等,指导教师:胡支军,99年创维杯全国大学生数学建模竞赛二等奖,中国工业与应用数学学会,1999。
27、郭正林,1999年事业单位工作人员考核优秀,贵州大学,2000.3
28、明祖芬,社会主义精神文明建设创建1997--1998先进个人,中共贵州大学委员会、贵州大学,1999.5
29、明祖芬,1997年事业单位工作人员考核优秀,贵州大学,1998.3
30、明祖芬,贵州大学“先进教师”,贵州大学,1998.9
八、编写出版教材书目
1、廖代明、黄朝芬、刘治修,高等学校专科试用教材《高等数学》(上下册),贵州人民出版社
2、何伟保、张民选,《数值分析》,贵州科技出版社
3、周国利、况山,高等学校教材《概率论与数理统计》,重庆大学出版社
4、张方南、张民选、白世恒、李声庆,高等学校教材《高等数学》(上下册),贵州人民出版社
第一章
1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、五章不定积分:
1、两类换元法
2、分部积分法(注意加c)定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
最新考研高数范围 数学二的高数范围(五篇)
文件夹