最新数学原理教学设计(精选11篇)
总结可以帮助我们更好地认识自己,发现自己的潜力和不足。写完总结后,我们需要仔细检查和修改,确保总结内容的准确性和完整性。请大家仔细阅读这些范文,并从中学习总结的技巧和方法。
数学原理教学设计篇一
这个环节的活动学生能按照不同的标准或选择某个标准,对物体进行比较、分类;在比较、分类的活动中,体验活动结果在同一标准下的一致性,不同标准下的多样性。学生经历简单的数据整理过程,能够用自己的方式呈现分类结果,对数据进行简单的分析,并能根据数据提出简单的问题。
最后一个环节迁移到孩子们真实的生活中,以我们班的同学为例,想一想,怎样给我们班的同学分类?这个问题源于孩子们的生活,孩子们解决这个问题的积极性都非常的高,大家踊跃发言,纷纷的说了许多自己想到的分类方法。
在本节课的教学实践中,虽然看起来课堂气氛非常活跃,学生学得很轻松,但总觉得学生学得不够扎实。
数学原理教学设计篇二
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。
二、通过操作,探究新知。
(一)活动一。
1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?
(板书:小棒4杯子3)。
提出要求:把所有的摆法都摆出来,看看你会有什么发现?
(1)同桌之间互相合作,动手摆,把各种情况记录下来。
(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)。
(4)师生共同理解“总有”“至少”有2枝什么意思?
(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。
2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?
(1)启发学生猜想结果。
把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?
(2)引导学生选择合适的方法。
提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?
(3)学生尝试操作验证。
(4)全班交流,操作演示。
预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。
(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。
3、课件出示:
把100根小棒放进99个杯子呢?
谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?
引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。
这也是数学中一种很重要的方法“假设法”。
引导学生观察小棒数和杯子数,你有什么发现?
明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。
(二)活动二。
谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
板书:书抽屉https:///总有一个抽屉放入算式。
5235÷2=2……1。
数学原理教学设计篇三
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
教学理念:
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
教学目标:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重难点:
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:
一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)。
师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?
生:坐下了。
生:对!
师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)。
二、通过操作,探究新知。
(一)探究例1。
1、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)。
2、研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)。
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)。
(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)。
5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”
6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。
这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
(二)探究例2。
1、研究把5本书放进2个抽屉。
(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)。
(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)。
(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。
2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。
如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。
3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)。
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)。
三、迁移与拓展。
下面我们一起来放松一下,做个小游戏。
四、总结全课。
这节课,你有什么收获?
数学原理教学设计篇四
1、知识目标:使学生在生活中领会“左右”的意义,认识左右的位置关系,理解其相对性。
2、能力目标:培养学生能用“左右的知识解决实际问题的能力。
3、情感目标:在活动中使学生感受学习数学的乐趣,从而获得积极的情感体验。
教学重点:认识左右的位置关系,正确确定左右。
教材分析。
《左右》是第五单元中继“前后”“上下”之后的第三课。本课时的教学内容是根据学生已有的经验和兴趣特点,从学生最熟悉的左手和右手引入教学,让学生在具体的操作和探索中观察、感知“左、右”的含义及其相对性。在体验左右的位置关系和变换的过程之后,引导学生把左右的知识应用于生活,激发学生探索数学的兴趣。教学时要注意结合学生已有的生活经验,组织学生亲身经历各种生动有趣的活动,充分感知左右,从而体会左右的意义。备课前经过了解,我发现这些一年级的孩子大多数已经能区分自己的左手和右手,但由于没有经过刻意的培养和训练,所以对左、右的反应比较迟缓,大部分学生区分左右的方法是:先想想哪只手会写字,再判断哪边是右边,然后想另外一边是左边。并且,左右的相对性在他们的思维上还是一片空白,所以,“理解左右的相对性”是这节课的难点。
学生情况分析。
我所执教的班级学生共50人。学生的语言表达能力一般,合作交流能力尚在培养之中。由于条件限制,执教时学生分成两大组,每大组中4人一排作为一个学习小组。
从学生最熟悉的左手与右手以及小朋友之间的座位关系教学左、右,易于学生理解和掌握新知。找自已身上的左右这一活动让学生充分利用自身的左右朋友来认识左右,让学生从自己的身体中获取大量的感性材料,感知左右,经历形成左、右方位感的过程,这样的教学联系实际,操作性强,使学生在轻松、愉快的学习氛围中,理解和掌握左右相对的位置关系,体会数学与生活的密切联系,逐步发展空间观念。游戏的学习方式让学生在玩中学,体会到生活中处处有数学。介绍自己左边右边的同学,这是对“左右”知识的延伸,把学到的知识用到生活中,使学生体验到学习与生活的联系。淘气要去小明家玩让学生用学过的知识帮淘气和老师解决困难,有助于调动学生的积极性,并且练习巩固了新知,做到了“学以致用”。体验“相对”,确定“左右”。对于一年级的学生,理解左右的相对性,应该建立在充分的感性认识基础上,这样的设计让学生体会相对性,突破难点。
教学过程。
一、感知自身的左和右。
1、感知左右手。
(1)学生用掌声欢迎来听课的老师。请学生说说在鼓掌时用到了我们身上的哪一对好朋友。(左手和右手)。
(2)请同学们举起右手,放下,再举起你们的左手,放下。
(3)大家说说,我们平时常用右手做哪些事呢?左手呢?
2、请学生找出我们身上这样的一对好朋友。(左耳、右耳;左眼、右眼;左脚、右脚等)。
3、游戏——听口令做动作。
伸出你的左手,伸出你的右手。
用你的左手摸左耳,用你的右手摸右耳,
用你的左手摸右耳,用你的右手摸左耳。
用你的左手拍左肩,用你的右手拍右肩,
用你的左手拍右肩,用你的右手拍左肩。
用你的左手拍左腿,用你的右手拍右腿,
用你的左手拍右腿,用你的右手拍左腿。
4、揭示课题。
刚才同学们已经熟悉了自己身体的.左和右,其实生活中的左和右还有许许多多。这节课,我们就一起来学习“左右”。(课件出示课题并请生齐读)。
二、实际操作,探索新知。
1、摆一摆。
同桌的同学互相合作,按老师的要求摆。
请你在桌上放一块橡皮;
在橡皮的左边摆一枝铅笔;
在橡皮的右边摆一个铅笔盒;
在铅笔盒的左边,橡皮的右边摆一把尺子;
在铅笔盒的右边摆一把小刀。
生摆好后,师出示正确的排列顺序,生检查自己的排列。
2、数一数。
从左数橡皮是第几个?从右数橡皮是第几个?
从左数橡皮是第二个,从右数橡皮是第四个。
为什么橡皮一会儿排第二?一会儿又排第四?
什么东西反了?能讲得更清楚一些吗?
(数的顺序反了,开始是从左数,后来是从右数。)。
师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。
3、说一说。
师生对口令游戏。
尺子的左边是什么?
尺子的右边是什么?
……。
同桌的同学互相对口令。
请学生说说自己的左边是谁,右边是谁?
(提问两个同学,然后每个人说给自己的同桌听。)。
4、找一找。
(课件出示教材第60页“找一找”挂图。)。
三、体验左右的相对性。
1、想一想。
刚才同学们帮东东解决了困难,现在愿不愿帮老师一个忙。
师:老师举的是哪只手?(师举右手。)。
有的同学说左手,有的同学说右手,老师举的到底是哪一只手?
(学生七嘴八舌,还是有的说左手,有的说右手。)。
同组的同学讨论一下,交流一下意见。
(小组讨论交流。)。
汇报结果。
师转身验证。
体验:同桌左边的同学向右转,右边的同学向左转,同时举右手。
师小结:如果面对着面,你的左手就会对着同桌的右手,你的右手就会对着同桌的左手。
2、小游戏。
老师和学生面对面站着,老师举右手,学生也举右手,老师举左手,学生也举左手,看谁举得又对又快。
(生十分投入地做游戏。)。
3、爬楼梯。
上楼梯时我们要靠哪边走?下楼梯时我们又要靠哪边走?
(学生说法不同)。
请两位同学示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。
(生观察时师提醒:下楼梯的同学是靠哪边走?)。
(生还是有的说左边,有的说右边。)。
现在同学们明白下楼梯时靠哪边走吗?
为什么上、下楼梯都靠右边走?
4、练一练。
四、解决问题,增强运用意识。
课件出示书p61第3题,其中有几辆顽皮的小汽车就躲在树底下,这里共有几辆车?先听听大客车是怎么说的?(课件:从右数大客车是第5辆,一共有几辆车?)小组讨论、汇报,说一说是怎样想的?(借助课件演示,帮助学生理解)。
五、课堂总结。
这节课你有哪些收获?
数学原理教学设计篇五
1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.
2.在明年(即)出生的1000个孩子中,请你预测:。
(1)同在某月某日生的孩子至少有个.
(2)至少有个孩子将来不单独过生日.
3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.
4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.
5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.
6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.
7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.
8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.
9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.
10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.
11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.
12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.
13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).
数学原理教学设计篇六
(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.
4.六个小朋友每人至少有1本书,一共有20本书,试证明:至少有两个小朋友有相同数量的书。
5.全班有40个同学,共有不到780本书,试证明:至少有2个同学有相同数量的书。
数学原理教学设计篇七
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。
反思我的教学过程,有几下几点可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。
数学原理教学设计篇八
学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的.过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
数学原理教学设计篇九
六年级数学下册70页、71页例1、例2。
1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。
经历“抽屉原理”探究过程,初步了解“抽屉原理”。
理解“抽屉原理”的一般规律。
相应数量的杯子、铅笔、课件。
让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。
师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
1、探究3根铅笔放到2个杯子里的问题。
师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?
摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。
2、教学例1
(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
(学生通过操作观察、比较不难发现有与上个问题同样结论。)
(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。
师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。
师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。
教师出示课件演示让学生进一步理解“平均放”。
3、探究n+1根铅笔放进n个杯子问题
师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?
让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。
师:7根铅笔放进6个杯子,你们又有什么发现?
……
学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。
学生汇报后引导学生用实验验证想法。
师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)
师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)
4、总结规律
a、先同桌摆一摆,再说一说。
b、你怎么分的?
引导学生知道再把两根铅笔平均分,分别放入两个杯子里。
(2)探究把15根铅笔放在4个杯子里的结论。
(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。
(4)教学例2
课件出示:
1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
学生汇报
小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。
师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的`结果。
1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?
2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?
板书设计:
抽屉原理
铅笔数(物体数) 杯子数(抽屉数) 总有一个杯子(抽屉)至少放进物体数
3 2 2
4 3 2
6 5 2
7 6 2
100 99 2
n+1 n 2
5 3 5÷3=1…2 1+1
15 4 15÷4=3…3 3+1
总有一个抽屉里至少放进物体的个数:商数+1
数学原理教学设计篇十
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的.结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。
二、通过操作,探究新知。
(一)活动一。
1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?
(板书:小棒4杯子3)。
提出要求:把所有的摆法都摆出来,看看你会有什么发现?
(1)同桌之间互相合作,动手摆,把各种情况记录下来。
(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)。
(4)师生共同理解“总有”“至少”有2枝什么意思?
(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。
2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?
(1)启发学生猜想结果。
把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?
(2)引导学生选择合适的方法。
提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?
(3)学生尝试操作验证。
(4)全班交流,操作演示。
预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。
(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。
3、课件出示:
把100根小棒放进99个杯子呢?
谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?
引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。
这也是数学中一种很重要的方法“假设法”。
引导学生观察小棒数和杯子数,你有什么发现?
明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。
(二)活动二。
谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
板书:书抽屉总有一个抽屉放入算式。
5235÷2=2……1。
文档为doc格式。
数学原理教学设计篇十一
《分类与整理》这单元的知识学习对一年级的学生来说并不难,所以教学中,我根据教学内容的特点和学生的实际情况,安排了许多自主探索、合作交流的活动,使学生在自主探索的教学活动中,加深了对分类的认识,重点是让学生学会了选择不同的分类标准的方法。
回顾整节课,我觉得这节课的优点是从生活切入数学,激发学习欲望。心理学的研究表明,学习内容和学生的生活背景越按近,学生自觉接纳知识的程度就越高。从学生熟悉的生活背景导入,容易让学生感受到数学就在身边。下面是我的几个教学环节:
第一个环节是举例发生在身边的事,学生很容易产生亲切感,激发了学生解决问题的欲望,很自然地形成数学与生活的链接。同时开阔学生思维,让学生说说分类的好处,充分感受到数学知识来源于生活,又回归于生活,应该为生活服务。
第二个环节是引入这节课的主题图——气球图,问:你能用自己喜欢的方法,把分类和计数的结果清楚地表示出来吗?然后,学生先独立思考再小组讨论分类的方法。