新人教版数学教案全册 人教版数学教案全册
文件夹
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11 12×77+8×77
(12+8)×77 36×25+4×25
(58+12)×14 27×21+27×29
27×(21+29) 11×(58+49)
(36×4)×25 58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=( )×( )
五、布置作业
p.57第2、4、5、6题
小学四年级数学下学期的学习特点和学习重点应该是什么? 在这个学习阶段,教案该怎样设计,下面是小编整理的人教四年级下册数学教案5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。
教学目标
1、 熟练掌握一、二级运算单列式从左到右的运算顺序。
2、 培养学生列综合算式解决实际问题的能力。
3、 感受教学与生活的紧密联系。
教学重难点
1、同级运算的运算顺序。
2、发现并总结概括出没有括号的混合运算顺序。
教学工具
课件
教学过程
(一)创设情境,导入新课
冬天你最喜欢什么运动?(堆雪人、打雪仗、滑冰、滑雪)这节课我们就来了解认识有关滑冰场情况。(出示“冰雪天地”主题图)让学生认真观察图。
根据主题图和提示提出问题。
1、肯定学生的积极表现,引导学生回顾和本节内容相关的旧知识。
2、出示信息,多媒体展示问题。
(二)结合情境,探究新知。
(1)天山滑雪场上午有72人,中午有44人离去,又有85人到来,现在有多少人在滑雪?
a:师:根据信息你能提出什么数学问题?
生:下午有多少人?
生:滑雪场一共有多少人?
师:你能有什么解决办法?
师:引导学生交流,鼓励学生发表自己的看法。
b:给学生一定的思考时间,鼓励学生独立列算式,然后求解,师生共同总结。
c:表扬表现积极的学生,多媒体展示问题二:“冰天雪地”3天接待987人,照这样计算,6天预计接待多少人?
d:请学生先进行独立思考,然后相互讨论。
e:强调算式的多样化,帮助学生理解。例如:问题二中算式987÷3表示6天总共接待的人数,再乘以6表示6天总共接待的人数,他们的现实意义是相同的,所以两种算法都是正确的。
3、结运算规律,在没有括号的算式里,如果只有加减法或者只有除法,都要从左往右按顺序计算。
4、请学生做书中的小练习。
(三)总结与反思,布置思考题
1、检查学生练习情况,请同学总结本节课的主要内容,教师再做适当补充。
2、教师进一步强调本节课的重点、难点和关键点。请学生反思自己本节课的学习情况,并谈谈收获和体会。
3、布置思考题及课后作业。
思考题:
如果一个算式里有加减法,又有乘法,应如何计算?
课后作业:
练习一第1、2、5题
课后习题
练习一第1、2、5题
教学目标
1.让学生在解决实际问题的过程中,感受用小括号是解决实际问题的一种策略。
2.使学生掌握含有两级运算(含有小括号)的运算顺序,并能正确计算。
3.培养学生独立思考和从不同角度考虑问题的习惯。
教学重难点
使学生掌握含有两级运算(含有小括号)的运算顺序,并能正确计算。
教学工具
课件
教学过程
一、复习旧知,引入新课。
1、口算
120+30-60 8×5×10
20+30÷3 120÷3×5
12×5-40÷2 150-100÷5×4
100×(38-31)
二、学习新课
1.出示挂图及例4(板书后)
1.引导学生认真读题,理解题意。(尤其是每30位游人需一名保洁员,师可问:60位游人需几名?90位游人呢?
2.分析题中数量关系,从问题入手,先要求什么,再求什么……的思路独立思考。
3.交流解题思路(引导说出第2种解法)。
4.如何把上式列成一个算式呢?(板书后)
问:每步算式表示的意义。
对含有小括号的运算,应先算什么,再算什么。
2.练习p11做一做。
3.出示例5.(板书后)
请生在书上的算式里标出运算顺序号。两名学生板演,同桌互评后独立计算,集体订正。
师问:观察两小题有什么相同地方?有什么不同地方?两题结果为什么不一样?
最后,同桌互相说一说每小题先求什么,再求什么,最后求什么?
师:给出加法、减法、乘法、除法统称为四则运算,以小组合作形式总结四则运算顺序。
师整理板书四则运算顺序。(板书后)
4.练习p12做一做1、2题。
5.课堂总结:这节课你有哪些收获?
课后习题
完成课后练习题。
教学目标
1、通过解决实际问题,使学生体会确定位置在生活中的应用。
2、通过学生自主探索,使学生能根据距离确定物体的位置。
3、培养学生空间观念和小组合作能力。
教学重难点
通过解决实际问题,使学生体会确定位置在生活中的应用。
教学工具
课件
教学过程
一、讲解定向运动,导入新课。
定向运动就是借助地形图和指南针,按照标绘在地图上的方向线,在野外环境中自行选择行进路线,不断地判断并纠正前进的方向,依次通过赛会预先放置的各个检查点,以最短时间到达所有点标并到达终点者为胜的一项体育运动。定向运动是一项健康的户外运动、是一项人与自然融合的运动、是一项挑战自我的运动。在运动中人们有回归自然、身心放松的良好感觉。定向运动通常在森林、郊外和城市公园里进行,也可在环境优美的校园里进行。
二、板书课题 位置与方向
师:下面就让我们共同挑战一次公园定向越野赛。
自己探究:这次探究公园定向越野赛,第一赛段是从起点到1号点,那我们如何去找1号点呢? 生:1号点在起点东北方向,我们从起点向东北方向走。
师:只知道向东北方向走,能又快又准的找到号点吗?
生:我认为不行。从起点到东北方向有很多路线可以走。
师:对啊!我们只知道方向,但怎样才能很快到1号点呢?
生:我认为找起点到1号点路程最近的方法最好,这样才能很快到1号点。
师:现在我们同学有两种方法,一种只看方向,另一种只看两地的距离,那么,大家想一想:这样能准确描述1号点吗?
师:那怎样才能准确地找到1号点呢?
生:只知道方向或距离是不行的,要同时知道这两个条件才行。
师:那怎样利用已有的方向和位置来确定1号点的位置? (分组讨论) 生:1号点在起点东偏北30°的方向,大约要走1000米。
生:1号点在起点北偏东60°的方向上,大约要走1000米。
师:提问:确定任意一点,应从哪几个方面描述?
生:从方向、距离来描述。
师:同学们能否指出教室的东南西北方向?
一生指出东南西北方向。
师:你能根据自己所在的位置指出东偏北30°的方向吗?(学生指出了)
小结:同学们,平时我们在生活中描述位置方向,一般以夹角较小方向上物体所在方向离得较近,就说偏向那个方向。
三、拓展练习:
1、图上练习:教材第18页“做一做”
2、实践活动:分组交流描述学校里各个建筑物的所在位置方向。
四、总结:你在本课学到了什么?有什么收获?
课后习题
完成课后练习题。
教学目标
知识与技能
1.通过观察发现,掌握加法交换律的意义。
2.学会用自己喜欢的方式表示加法交换律,初步感知代数思想。
3.会运用加法交换律验算加法。
过程与方法
1.经历加法交换律的发现过程,体验观察比较,举例论证,总结归纳的学习方法。
2.经历加法交换律的应用过程,体验数学知识间的联系和它的广泛应用性。
情感、态度与价值观
让学生感受发现知识的快乐,激发学生的兴趣,感受数学与生活的联系。培养学生学数学、用数学的乐趣。
教学重难点
教学重点:理解并掌握加法的交换律。
教学难点:能根据实际情况,在计算式灵活应用加法运算律。
教学工具
多媒体、板书
教学过程
创设情境,探究新知
李叔叔准备骑车旅行一星期,他今天上午骑了40 km,下午骑了56千米,李叔叔今天一共骑了多少千米?
(1) 理解题意
求李叔叔今天一共骑了多少千米,就是求上午和下午一共骑了多少千米?
用加法:40+56或56+40
师:今天我们就来学习一下加法运算的定律。
板书:加法运算定律
(2) 解决问题
40+56=96(km)或56+40=96(km)
(3) 观察算式,发现定律
两道算式的得数相同,所表示的都是李叔叔今天一天骑的路程,因此两道算式之间可用等号连接,即40+56=56+40
观察40+56=56+40,发现,等号左、右两边的加数相同,只是交换了位置,但结果不变。由此可以得出结论:交换加数的位置,和不变。
(4)验证定律
是否所有的加法算式交换加数的位置,和都不变呢?可以举例验证。如:
0+200=200 ; 200+0=200 所以 0+200=200=0
11+78=89 ; 78+11=89 所以 11+78=78+11
发现:任意两个数相加,交换加数的位置,和不变,这就是加法的交换律。
(5)用字母表示定律
在数学当中通常用字母表示定律,若用a,b分别代表两个加数,则加法交换律就可以表示为a+b=b+a(a,b代表任意数)。用字母表示更加直观、方便。
板书:加法交换律:a+b=b+a
归纳总结1:两个加数交换位置,和不变,用字母表示为:a+b=b+a。
随堂练习:
小红有24支水彩笔,小刚有16支水彩笔,小红和小刚一共有多少支水彩笔?
答案:24+16=40(支)或者16+24=40(支)
探究新知2:加法结合律
情境导入:
问李叔叔这三天一共骑了多少千米?
1. 理解题意
师:要求三天一共骑了多少千米,就是求第一天所骑的加上第二天再加上第三天所骑的所有路程是多少,列式:88+104+96
2. 解答:
方法一:按从左往右的顺序:
88+104+96
= 192+96
= 288(千米)
方法二: 观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。
即: 88+104+96
= 88+(104+96)
= 88+200
= 288(千米)
答:李叔叔这三天一共骑了288千米。
3. 发现规律
观察两种解题方法,发现:一是先把前两个数相加,再加上第三个数,方法二是先把后两个数相加,再和第一个数相加,他们的计算结果相同,因此,
可以写成等式(88+104)+96=88+(96+104)
归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律 。
4. 用字母表示定律
如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)
板书:加法结合律(a+b)+c=a+(b+c)
活学活用:
有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?
68+(59+41)
= 68+100
= 168(米)
答:三块布一共有 168米
探究新知3:加法中的简便运算
下面是李叔叔后四天的行程
1.理解题意
师:要想求李叔叔后四天还要骑多少千米,只要把后四天所有的路程加起来就行了,列式为:115+132+118+85
2.观察算式特点
师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:
115+132+118+85
= 115+85+132+118
加法交换律 = (115+85)+(132+118)
加法结合律
= 200+250
= 450
3.解答
115+132+118+85
= 115+85+132+118
= (115+85)+(132+118)
= 200+250
= 450(千米)
归纳总结:
在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
活学活用:
丁杰看一本故事书,第一天看了62页,第二天看了93页,这时还剩下138页没有看,这本故事书一共有多少页?
答案: 62+93+138
=(62+138)+93
= 200+93
= 293(页)
答:这本故事书一共有293页。
探究新知4:连减的简便运算
情境导入
一本书一共有234页,还有多少页没看?
1. 理解题意
师:已知总页数是234页,减去昨天和今天看的,就是剩下的。
2、列式子
解法一:(1)今天看的 66+34=100(页)
(2)剩下的 234-100=134(页)
解法二:从总页数中减去今天看的34页,再减去昨天看的66页,
剩下的就234-34-66=134(页)
3.比较发现
比较以上解法得数是一样的,可知:从一个数中连续减去两个数,也就相当于从被减数中减去两个减数的和,在连减算式中任意交换减数的位置,差不变。
即:a-b-c=a-(b+c) ; a-b-c=a-c-b
活学活用:
妈妈拿100元去超市购物,买蔬菜花了26元,买水果花了24元,还剩多少钱?
答案:100-26-24=50(元)
拓展提升:
1、 计算 :1+2+3+4+5......+48+49+50
师解析:
方法一:观察这组数据发现,1+50=51,2+49=51,3+48=51….25+26=51
50个数相加,两两结合为25组,每组的和都为51,这样可以算出答案:51×25=1275
方法二:如果把50个数倒过来写,分别相加,就是50个51相加再除以2,即是答案。
即:1+2+3+4….+48+49+50
= (1+50) ×(50÷2)
=1275
归纳总结:解决问题要动脑,这样会找到多种解决问题的方案,解答时要选择一个最简便的方法。
举一反三:
用简便方法计算:199999+19998+1997+196+95
答案: 199999+19998+1997+196+95
= 200000+20000+2000+200+100—(1+2+3+4+5)
= 222300—15
= 222285
归纳小窍门: 当算式中的数字较大时,可以利用估算的思路,把它们都看做是和它们最接近的整百、整千、整万….的数,计算出结果后,再减去多加的部分。
课后小结
这节课你学会了什么呢?
a.这节课我们学习了加法运算律和加法结合律
用字母表示为a+b=b+a; a+b+c=a+(b+c)
b.数学运算时要选择简便运算方法,在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
课后习题
1、 计算下列算式
138+227+173 69+406+94
答案:138+227+173 69+406+94
= 138+(227+173) = 69+(406+94)
=138+400 =69+500
=538 =569
2、一根钢丝,第一次用去187米,第二次用去145米,这时还剩下113米,这根钢丝全长多少?
答案: 187+145+113
= (187+113)+145
= 300+145
= 445(米)
答:这根钢丝全长445米
板书
加法运算律
加法交换律 加法结合律
a+b=b+a; a+b+c=a+(b+c)
善于发现简单法,计算准确快又好
教学目标
知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。
过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。
情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。
教学重难点
教学重点
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点
乘法分配律的应用。
教学工具
多媒体课件
教学过程
一、复习导入
二、学习乘法交换律和乘法结合律
1.学习例5。
(1)出示例5
(2)学生在练习本上独立解决问题。
(3)引导学生对解决的问题进行汇报。
4×25=100(人)
25×4=100(人)
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:a×b=b×a
2.学习例6。
(1)出示例6
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(25×5)×2 25×(5×2)
=125×2 =10×25
=250(桶) =250(桶)
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
能试着用字母表示吗?
学生汇报字母表示:(a×b) ×c=a× (b×c)
(4)完成例6下面做一做的第一题。
3.学习例7。
(1)出示例7。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
能试着用字母表示吗?
学生汇报字母表示:(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
(4)完成例7下面做一做的第一题。
3.学习例8。
(1)出示例8。
(2)收集信息,明确条件问题
(3)学生独立思考,尝试解决问题
(4)读懂过程,感悟不同方法
课后小结
今天你有什么收获?
课后习题
1.运用乘法运算定律,在下面的横线上填上恰当的数。
78×85×17=78×(_____×______)
81×(43×32)=(_____×______)×32
(28+25)×4= ×4+ ×4
15×24+12×15= ×( + )
6×47+6×53= ×( + )
(13+ )×10= ×10+7×
2.判断对错。
(1)39×22-39×2=39×22-2 ( )
(2)39×22-39×2=39×(22-2) ( )
(3)39×28+39×72=39×28+72 ( )
(4)39×28+39×72=39×(28+72) ( )
(5)39×12=39×(12-2) ( )
(6)39×12=39×(10+2) ( )
板书
交换两个因数的位置,积不变。这叫做乘法交换律。
先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律
★ 最新人教版四年级数学下全册教案文案
★ 2021最新人教版四年级数学下册教案
★ 最新人教版四年级数学下册教案模板
★ 人教版四年级下册数学教案及反思最新文案
★ 四年级下册数学人教版教案最新模板
★ 2021最新年人教版四年级数学下册教案
★ 人教版四年级下册数学全册教案最新范文
★ 2021人教版四年级数学下册全册教案模板
★ 2021人教版四年级下册数学最新教案
★ 人教版四年级下册数学教案2021模板
教学内容:
教材第21页例1、22页做一做及练习五1-3题。
教学目标:
1、让学生经历观察、比划、测量等学习活动,明确毫米产生的实际意义,使他们初步认识新的长度单位毫米,建立1毫米的概念,会用毫米作单位进行测量,并能掌握毫米与厘米间的关系,进行简单的换算。
2、借助具体的测量活动,进一步培养学生的动手操作能力,能估计一些物体的长度,进一步发展估测意识。
3、感受数学与生活的密切联系,学会与他人合作,从而获得积极的学习数学的情感。
教学重点:
建立较为准确的“1毫米”的概念。
教学难点:
理解厘米与毫米之间的进率。
教学准备:
教师准备课件、米尺;学生准备书、直尺一把、一枚1分硬币、一张银行借记卡、小棒等。
教学过程:
一、创设情境,揭示课题。
1、复习米和厘米,引导学生用手势来表示1米和1厘米各有多长。
2、估计数学书的宽和厚大约是多少,动手测量验证。
3、组织交流测量结果,引出毫米产生的意义。
4、揭示课题“毫米的认识”。
二、自主探究,学习新知。
1、建立“1毫米”的表象。
①毫米可以用字母mm来表示。设疑:关于毫米,你已经知道了哪些知识?(学生思考、交流)
②在学生交流的基础上,重点探讨“1毫米”有多长,请学生在尺上相互指指,从哪里到哪里是1毫米。再请持有不同意见的同学向全班汇报、交流。
揭示:为了看得更清楚些,我们把尺子用放大镜放大,把1厘米平均分成10份,其中的任何一份也就是每一小格的长度,就是1毫米(边介绍边用课件演示)然后,请学生在自己的尺子上再指一指1毫米有多长。
③思考:现在你觉得毫米与厘米之间有什么关系?
1厘米=10毫米
④请学生想一想哪些物体的长度大约是1毫米。(教师准备1分硬币、电话卡和银行借记卡,请学生量一量厚度,加深对“1毫米”的体验。)
⑤引导学生用手势来表示1毫米有多长,并谈谈自己的感受。
⑥说一说,生活中还有哪些地方用到“毫米”作单位。(学生举例,教师提供一些资料)
⑦学生填写数学书的厚和宽并反馈。
2、画线段。(3厘米7毫米长的线段。)
提问:用直尺画线段时需要注意什么?如何画出3厘米7毫米长的线段?
学生可能有以下几种画法
a、利用刻度尺先画出3厘米的线段,再接着画出7毫米。
b、在刻度尺上输出37毫米(3厘米=30毫米),然后画线段。
学生操作,教师巡视引导,注意线段从“0”刻度开始画和不从“0”刻度开始画的画法区别。
三、实践应用,巩固新知
1、学生根据本课的新内容完成“做一做”第1、2、题。
第1题让学生根据图示读出刻度尺所测量的物体长度。明确先1厘米1厘米地鼠,不满1厘米的再1毫米1毫米地数,这样的方法更加的快捷方便。学生读数,再指名汇报。
第2题让学生先估算,再测量,然后集体订正,指名说说理由。
2、完成“练习五”第2题。
以毫米为单位测量出每条边的长度,学生独立完成后集体订正。
四、课堂小结,课外延伸。
这节课我们学习了什么?你学会了什么?请你用手势表示1毫米大约有多长。米不是的长度单位,毫米也不是最小的长度单位,如果你们有兴趣,希望你们到书中或网上查查看。
板书设计:
毫米的认识
1厘米=10毫米
10毫米=1厘米
教学目标
1.让学生在解决实际问题的过程中,感受用小括号是解决实际问题的一种策略。
2.使学生掌握含有两级运算(含有小括号)的运算顺序,并能正确计算。
3.培养学生独立思考和从不同角度考虑问题的习惯。
教学重难点
使学生掌握含有两级运算(含有小括号)的运算顺序,并能正确计算。
教学工具
课件
教学过程
一、复习旧知,引入新课。
1、口算
120+30-60 8×5×10
20+30÷3 120÷3×5
12×5-40÷2 150-100÷5×4
100×(38-31)
二、学习新课
1.出示挂图及例4(板书后)
1.引导学生认真读题,理解题意。(尤其是每30位游人需一名保洁员,师可问:60位游人需几名?90位游人呢?
2.分析题中数量关系,从问题入手,先要求什么,再求什么……的思路独立思考。
3.交流解题思路(引导说出第2种解法)。
4.如何把上式列成一个算式呢?(板书后)
问:每步算式表示的意义。
对含有小括号的运算,应先算什么,再算什么。
2.练习p11做一做。
3.出示例5.(板书后)
请生在书上的算式里标出运算顺序号。两名学生板演,同桌互评后独立计算,集体订正。
师问:观察两小题有什么相同地方?有什么不同地方?两题结果为什么不一样?
最后,同桌互相说一说每小题先求什么,再求什么,最后求什么?
师:给出加法、减法、乘法、除法统称为四则运算,以小组合作形式总结四则运算顺序。
师整理板书四则运算顺序。(板书后)
4.练习p12做一做1、2题。
5.课堂总结:这节课你有哪些收获?
课后习题
完成课后练习题。
教学目标:
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教学重难点:
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教具准备:
直尺、小棒
教学过程:
课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“”“”或“=”。
一、数学活动
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,你还可以怎么围?
通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结
通过今天的学习你有什么想法?
板书设计:
三角形边的关系
三角形任意两边的和大于第三边
知识与技能:
使学生简单了解计算工具的发展,包括结绳计事等远古计数方法、算筹的简 单知识、传统计算工具——算盘,及其计算方法、生活中常用的计算器、和现代计算机的发展史。
过程与方法:
使学生经历认识和使用计算工具的过程,会使用计算器进行计算。
情感、态度与价值观:
培养学生学习数学的兴趣,感受生活中处处有数学。
教学重难点
教学重点:认识算盘、计算器等计算工具。
教学难点:利用计算器来进行计算。
教学工具
ppt课件
教学过程
一、引入新课
学生介绍计算工具。
二、介绍古代计算工具,拓宽视野。(课件出示)
(一)认识算筹
师:计算工具从古到今,随着人类社会的不断进步,经过了漫长的发展过程。远古时代,人类在捕鱼、狩猎和采集果实的劳动中,产生了计数的需要。人们就用石子、结绳或者在木棒上刻痕来计数。后来就出现了这样一种计数方法——算筹。(板书:算筹)
介绍算筹:二千多年前,中国人用算筹计算。用算筹表示一个数,采用十进位制,并且纵式横式交替使用。个位数用纵式表示,十位数用横式表示,百位数再用纵式表示......空格表示零。算筹一般是用十几厘米长的竹签制成(也可以是木制、骨制或玉制的)。用这些算筹摆成不同的形式,表示不同的数目,并进行各种计算。
(二)认识算盘
1、介绍算盘的由来:用算筹计算后又过了一千年左右,中国人又发明了算盘作为计算工具。早在公元15世纪,算盘已经在我国广泛使用,后来流传到日本、朝鲜等国。它的特点是结构简单,使用方便,特别使用它计算数目较大和数目较多的加减法,更为简便。(板书:算盘)
2、介绍算盘的组成。
(1)算盘各部分名称:
师:算盘是我国古代的发明,是我国的传统计算工具,曾经在生产和生活中广泛应用,至今仍然发挥这它独特的作用。你在哪见过有人使用算盘?(中药店、银行等)
大家还记得算盘的各部分名称吗?我们一起再来看一看。算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在梁下,每颗代表一。
出示教材第24页的两种算盘:观察有什么不同。左边的算盘是中国算盘, 上面有两颗珠子,每颗代表5。后来算盘发展到日本,逐渐演变成右边这样,上面变成一颗珠子。原因是我国古代采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。一档表示10。它的特点是结构简单,使用方便,特别实用。他计算数目较大和数目较多的加减法,更为简便。
(2)算盘的两种功能:计算和计数。
(602 134067 35215862)
(设计意图:学生课前已经做了预习并查找了资料,所以课一开始就让学生展示自己所了解的计算工具,发散了学生思维,提高了学习兴趣。教师根据学生汇报的情况有重点的请学生介绍如结绳、算筹等使用的方法,进一步使学生体会了计算工具发展的过程。)
(三)计算尺。
17世纪初,英国人发明了计算尺。
(四)机械计算器
17世纪中期,欧洲人发明了机械计算器。
(五)电子计算机
20世纪40年代,诞生了第一台电子计算机。
(六)计算器的认识
20世纪70年代,人们发明了电子计算器,生活中开始用计算器来进行计算,只要输入题目,计算器就会显示结果,运算过程自动完成。这样非常简便快捷。我们就来学习用计算器计算。(板书:计算器)
1、介绍功能键:
大家也许会发现有很多种计算器。这是因为根据各种不同的需要,有不同的计算器。有科学专用的计算器,有最简洁的计算器……但他们的功能都大致相同。我们一起看一下我们手中的这款计算器。
(设计意图:展示学生手中的计算器,让学生对计算器的大小、模样、作用有初步的了解,为下一步具体学习计算器的使用打下基础。并引起探索的兴趣。)
2、使用计算器:
师:计算器怎么使用?
学生介绍使用方法:按“on/c”键:开始显示;输入数字和符号;按“=”键,显示结果;再按“on/c”键,清屏。计算器上还有一些具有特别功能的键。例如,a、%等,还可以用来计算分数等。
3、利用计算器计算。
先估算,这道题大约得几?怎样估算?利用计算器怎样计算?
(2)用计算器计算乘、除法。
先估算大约得几?怎么估算?再用计算器计算。
26×39 312÷8
(设计意图:认识计算器,让学生自主了解计算器各个功能键的作用,并在老师的指导下能运用计算器进行四则计算,探究计算规律,尤其是存储功能键的使用更是有趣又有难度。既培养学生观察、推理能力,也可以端正学生对待计算器的正确态度,懂得合理地利用它。)
4、用计算器计算找规律。
9999×1= 9999×5=
9999×2= 9999×7=
9999×3= 9999×9=
9999×4=
运用比赛的形式独立练习用计算器算一算。
学生计算,全班交流。
三、课堂练习,巩固新知
1、用计算器计算比赛。
2、算一算,找规律。
111105÷9=__________
9÷9=1 1111104÷9=__________
四、总结提升
师:计算器的使用为我们带来了很多的方便。随着科技的进步,人们又发明了电子计算机、(课件出示)台式电脑、笔记本电脑、平板电脑。随着社会的发展,人类计算工具会更加先进,这就要等着在座的各位——你们这一代人去实现。
2025年新人教版四年级数学教案全册 人教版四年级数学教案全册(6篇)
文件夹