2025年初中数学知识点总结人教版(九篇)
文件格式:DOCX
时间:2023-03-14 00:00:00    小编:日本程序员桑社长

2025年初中数学知识点总结人教版(九篇)

小编:日本程序员桑社长

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。大家想知道怎么样才能写一篇比较优质的总结吗?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学知识点总结人教版篇一

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

初中数学知识点总结人教版篇二

一、数与代数

a、数与式:

1、有理数:①整数→正整数,0,负整数;

②分数→正分数,负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:带上符号进行正常运算。

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数或指数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数

无理数:无限不循环小数叫无理数,例如:π=3.1415926…

平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根;0的平方根为0;负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:①实数分有理数和无理数。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

a^m+a^n=a^(m+n)

(a^m)^n=a^(mn

(a/b)^n=a^n/b^n

除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式:a^2-b^2=(a+b)(a-b);

完全平方公式:(a+b)^2=a^2+2ab+b^2;(a-b)^2=a^2-2ab+b^2。

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

b、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法:代入消元法;加减消元法。

1)一元二次方程的二次函数的关系

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

(3)公式法

3)解一元二次方程的步骤:

(1)配方法的步骤:

(2)分解因式法的步骤:

(3)公式法

4)韦达定理

5)一元二次方程根的情况

ta”,而△=b2-4ac,这里可以分为3种情况:

i当△0时,一元二次方程有2个不相等的实数根;

ii当△=0时,一元二次方程有2个相同的实数根;

iii当△b,则a+cb+c;

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:如果ab,则a-cb-c;

在不等式中,如果乘以同一个正数,不等式符号不改向;

例如:如果ab,则a*cb*c(c0);

在不等式中,如果乘以同一个负数,不等号改向;

3、函数

变量:因变量y,自变量x。

在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。

②当b=0时,称y是x的正比例函数。

一次函数的图像:

①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。

②正比例函数y=kx的图像是经过原点的一条直线。

③在一次函数中,当k〈0,b〈o时,则经234象限;

当k〈0,b〉0时,则经124象限;

当k〉0,b〈0时,则经134象限;

当k〉0,b〉0时,则经123象限。

④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。

二空间与图形

a、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②n棱柱就是底面图形有n条边的棱柱,上下底面就是n边形。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。

性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上;

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

――补角=180-角度。

4、同角或等角的余角相等――余角=90-角度。

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理

三角形两边的和大于第三边

16、推论

三角形两边的差小于第三边

17、三角形内角和定理:

三角形三个内角的和等于180°

18、推论1

直角三角形的两个锐角互余

19、推论2

三角形的一个外角等于和它不相邻的两个内角的和

20、推论3

三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

23、角边角公理(

asa):有两角和它们的夹边对应相等的

两个三角形全等

25、边边边公理(sss):有三边对应相等的两个三角形全等

27、定理1

在角的平分线上的点到这个角的两边的距离相等

28、定理2

到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

32、推论3

等边三角形的各角都相等,并且每一个角都等于60°

33、等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

35、推论1

三个角都相等的三角形是等边三角形

36、推论

有一个角等于60°的等腰三角形是等边三角形

38、直角三角形斜边上的中线等于斜边上的一半

39、定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1

关于某条直线对称的两个图形是全等形

43、定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3

45、逆定理

46、勾股定理

47、勾股定理的逆定理

48、定理

四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理

n边形的内角的和等于(n-2)×180°

51、推论

任意多边的外角和等于360°

52、平行四边形性质定理1

平行四边形的对角相等

53、平行四边形性质定理2

平行四边形的对边相等

54、推论

夹在两条平行线间的平行线段相等

55、平行四边形性质定理3

平行四边形的对角线互相平分

56、平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2

两组对边分别相等的四边

形是平行四边形

58、平行四边形判定定理3

对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

60、矩形性质定理1

矩形的四个角都是直角

61、矩形性质定理2

矩形的对角线相等

62、矩形判定定理1

有三个角是直角的四边形是矩形

63、矩形判定定理2

对角线相等的平行四边形是矩形

64、菱形性质定理1

菱形的四条边都相等

65、菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即s=(a×b)÷2

67、菱形判定定理1

四边都相等的四边形是菱形

68、菱形判定定理2

对角线互相垂直的平行四边形是菱形

69、正方形性质定理1

正方形的四个角都是直角,四条边都相等

71、定理1

关于中心对称的两个图形是全等的

72、定理2

73、逆定理

74、等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理

在同一底上的两个角相等的梯

形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理

79、推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

l=(a+b)÷2

s=l×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

86、平行线分线段成比例定理

三条平行线截两条直线,所得的对应线段成比例

87、推论

88、定理

89、平行于三角形的一边,并且和其他两边相交的直线,

所截得的三角形的三边与原三角形三边对应成比例

90、定理

91、相似三角形判定定理1

两角对应相等,两三角形相似(asa)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2

两边对应成比例且夹角相等,两三角形相似(sas)

94、判定定理3

三边对应成比例,两三角形相似(sss)

95、定理

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(hl)

96、性质定理1

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2

相似三角形周长的比等于相似比

98、性质定理3

相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=co,co=sin(90-a)

(a90)

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

109、定理

不在同一直线上的三点确定一个圆。

110、垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2

圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理

115、推论

116、定理

一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1

118、推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线l和⊙o相交

0=d<r

②直线l和⊙o相切

d=r

③直线l和⊙o相离

d>r

122、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理

圆的切线垂直于经过切点的半径

124、推论1

经过圆心且垂直于切线的直线必经过切点

125、推论2

经过切点且垂直于切线的直线必经过圆心

126、切线长定理

从圆外一点引圆的两条切线相交与一点,它们的切线长相等

,圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理

弦切角等于它所夹的弧对的圆周角?

129、推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论

132、切割线定理

133、推论

从圆外一点引圆的两条割线,这一点到每条

割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离

d>r+r

②两圆外切

d=r+r

③两圆相交

r-r<d<r+r(r>r)

④两圆内切

d=r-r(r>r)

⑤两圆内含

d<r-r(r>r)

136、定理

相交两圆的连心线垂直平分两圆的公共弦

137、定理

把圆平均分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

138、定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积sn=pn*rn/2

p表示正n边形的周长

142、正三角形面积√3a^2/4

a表示边长

144、弧长计算公式:l=n兀r/180――》l=nr

145、扇形面积公式:s扇形=n兀r^2/360=lr/2

146、内公切线长=d-(r-r)

外公切线长=d-(r+r)

初中数学知识点总结人教版篇三

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1.零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律 加法结合律

乘法交换律 乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

④数字与数字相乘,一般仍用“x”号,即“x”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

2、整式:单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

1.单独的一个数或一个字母也是单项式;

2.单独一个非零数的次数是0;

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:

a.所含字母相同;

b.相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:

(1)去括号;

(2)合并同类项。

1、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

2、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

3、线段的中点:

点m把线段ab分成相等的两条相等的线段am与bm,点m叫做线段ab的中点。am = bm =1/2ab (或ab=2am=2bm)。

4、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

5、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠b,∠c等。

④用三个大写英文字母表示任一个角,如∠bad,∠bae,∠cae等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

6、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

7、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

8、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

11、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点o称为圆心,线段oa的长称为半径的长(通常简称为半径)。

圆上任意两点a、b间的部分叫做圆弧,简称弧,读作“圆弧ab”或“弧ab”;由一条弧ab和经过这条弧的端点的两条半径oa、ob所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

6、解一元一次方程的一般步骤:

(1)去分母

(2)去括号

(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

(4)合并同类项

(5)将未知数的系数化为1

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°x该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初中数学知识点总结人教版篇四

不管是人教版还是其他版本的教材,学习语文的主要方法都是一样的,就是总结知识点。下面是由本站小编为大家整理的人教初中语文知识点,希望可以帮助到大家!

语音 课标要求:

(一)书写字母要规范:1.一律用印刷体小写字母,不可掺杂手写体。2.要安在四线三格上书写字母的规定写字母。3.拼写人名、地名、国名及专有名词时,第一个字母应当大写,句子开头的第一个字母也要大写。我看了不少鲁迅的作品。

(三)注意拼音规则:

韵母表中i行的韵母,在前面没有声母的时候,要用y 开头。(2)韵母表中u行的韵母,在前面没有声母的时候,要用w开头。(3)韵母表中û行的韵母,在前面没有声母的时候,也要用y开头。加y后,û的两点要省去。

使用y、w,主要是为了连写时明确音节的分界,y、w是起隔音作用的字母。如:把"大衣"二字连写成dai,就会以为是一个音节。用了y,写成 dayi,音节的分界就分明了。 省写:(1)韵母iou ,uei,uen前面加声母的时候,写成iu(优),ui(威),un(温)。如:牛、归、论(2)û和n、l以外的声母相拼时都省去两点。

a,o,e开头的音节连接爱其他音节后面时,如果音节的界限发生混淆,用隔音符号(')隔开。如:pí'ǎo(皮袄)

正确拼读字可使用下列方法:

9.拗断 ǎo 10.拗口令 ào b

在山的那一边 一、重点字词

1.给下列加点字注音。 ī想 诱.yîu惑 ān腾 点拨:不要把“诱”误读成xiù。 2.根据拼音写出相应的汉字。

(huàn) 幻想 (shùn) 瞬间 (níng)凝成 3.解词。

(1)隐秘:隐蔽,不外露。 (2)一瞬间:一眨眼之间。

1.在山的那边,是海! 是用信念凝成的海。

1.《在山的那边》的作者是王家新

2.从表达方式和内容看,诗歌分叙事诗、抒情诗、哲理诗三种,《在山的那边》属于哲理诗。

第2课 走一步 再走一步 一、重点字词

1.给下列加点字注音。 î泣 纳罕.hǎn 峭.qìao壁 àn àn抖 闷.mēn热 屡.lǚ次。 2.根据拼音写出相应的汉字。

训(jiâ) 诫 瘦骨(lín xún) 嶙峋 小心(yìyì) 翼翼 (sǒng) 耸立 3.解词。

(1) 纳罕:惊奇,诧异。

(2) 啜泣:抽噎,抽抽搭搭地哭。 二、重点句子

我提醒自己,不要想着远在下面的岩石,而要着眼于那最初的一小步, 走了这一步再走下一步,直到抵达我所要到的地方。 (点拨:本句是主旨句,含义深刻。)

三、文学常识

1.给下列加点字注音。 擎天撼.hàn地 糟蹋..zāo tà 庸碌.lù 小憩.qì 2.根据拼音写出相应的汉字。 (sāo) 骚扰 (gū) 辜负 3.解词。

(1) 擎天撼地:形容力量巨大。

《生命 生命》的作者是中国台湾(地名)女作家杏林子,她写了四十多个剧本和许多散文

第4课 紫藤萝瀑布 一、重点字词

1.给下列加点字注音。 瀑.pù布 迸.bâng溅 忍俊不禁.jīn ú卧龙 伶仃..líng dīng àn放 ì ù立 仙露琼.浆qiïng 沉浸.jìn 2.解词。

1.《紫藤萝瀑布》是一篇托物言志(或借景抒情)的散文,作者是当代 (时代)女作家宗璞。

2.散文按表达方式分叙事散文和抒情散文,散文最重要的特点是形散神不散。

(三)

理想 一、重点字词

1.给下列加点字注音。 脊.jǐ粱 船舶.bï 载.zài着 倔强..juã jiàng 鬓.bìn发 ï áo àn污 扒.pá窃 2.解释下列词语。

(1) 玷污;弄脏(多用于比喻)。

(2) 可望不可即:只能够望见不能够接近。 3.用恰当的动词填空。

点拨:“累”是多音字,要结合语境正确渎音 2.根据拼音写出相应的汉字。

(duî) 堕落 牙yín龈 贪(lán) 婪 (chú) 雏形 苦(áo) 熬 3.解释下列词语。

(1) 点缀:加以衬托或装饰,使原有事物更加美好。 (2) 繁弦急管:各种各样欢快的音乐声。 (3) 红灯绿酒:形容繁华热闹的夜生活。 (4) 低回:留恋。

(5) 具体而微,整个形体都已经具备了,只是比较微小而已。 (6) 不可磨灭:指事迹、言论等将始终保留在人们的记忆中。 (7) 回味无穷:比喻回想某事物越想越觉得有意思。 (8) 多姿多彩:本文指生活丰富而充实。

1.这种命运事实上是我们自己选择的,否则我们不必在春天勤生绿叶,不必在夏日献出浓阴。神圣的事业总是痛苦的,但是也惟有这种痛苦能把深沉给予我们。

1.给下列加点字注音。 嬉.xī戏 风韵.yùn 慷慨.kǎi ào ã 泯.mǐn灭 禀.bǐng告 厄.â运 掳.lǔ 皎.洁jiǎo ã生 2.解释下列词语。

(1) 风韵:优美的姿态神情。 (2) 闲适:清闲安适。

(3) 得失之患:生怕失去个人利益的忧虑心情。 (4) 泯灭:丧失。

(5) 厄运:不幸的命运。

1.她不愧是赏月的行家,在她的眼里,月的阴晴圆缺无不各具风韵。

2.凡是人间的灾难,无论落到谁头上,谁都得受着 而且都受得了,——只要他不死。

三、文学(文体)常识

1.《人生寓言》选自《周国平文集》,作者是当代著名诗人、哲学家(称谓) 周国平(人名)。

1.生活对于任何人都非易事,我们必须有坚韧不拔的精神。最要紧的,还是我们自己要有信心。

2.我们必须相信,我们对每一件事情都具有天赋的才能,并且,无论付出任何代价,都要把这件事完成。

三、文学(文体)常识背记知识清单

《我的信念》的作者波兰(国名)著名科学家玛丽·居里,她曾两次获得诺贝尔奖。

第10课 《论语》十则 一、重点字词

罔:迷惑。意思是感到迷茫而无所适从。

(7) 思而不学则殆. 殆:有害。 (8) 然后知松柏之后凋.

也 凋:凋谢。 3.请写出三个出自本课的成语温故知新、见贤思齐、择善而从。 二、重点句子背记知识清单 1.用原文填空。

(1) 阐明学与思关系的句子是学而不思则罔,思而不学则殆。 (2) 孔子认为怎样才能做到明智? 知之为知之,不知为不知。

(3) 孔子认为对先进和落后的态度应是见贤思齐焉,见不贤而内自省也。 (4) 赞美松柏坚强品格的句子是岁寒,然后知松柏之后凋也。 2.将下列句子翻译成现代汉语。 (1) 温故而知新,可以为师矣。

温习旧知识,能够获得新的理解和体会,就可以做老师了。 点拨:重点理解“故”、“为”等词的意思。 (2)士不可以不弘毅,任重而道远。

读书人不可以不心胸宽广、意志坚强,他们责任重大,道路遥远。 点拨,重点理解“土”“弘毅”等词的意思。 三、段背记知识清单 1.曾子曰:“吾日三省吾身:为人谋而不忠乎? 与朋友交而不信乎? 传不习乎?” 2.子贡问曰:“有一言而可以终身行之者乎?”子曰:“其恕乎!己所不欲,勿施于人”。

四、文学(文体)常识背记知识清单

1.孔子,名丘,字仲尼,春秋时期伟大的思想家、教育家。

初中数学知识点总结人教版篇五

1、定义

把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(―x,―y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,―y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(―x,y)

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

1、一个图形的面积等于它的各部分面积的和;

2、两个全等图形的面积相等;

5、相似三角形的面积比等于相似比的平方;

7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对x求积分。

初中数学知识点总结人教版篇六

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1

①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2

圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

12、①直线l和⊙o相交d

②直线l和⊙o相切d=r

③直线l和⊙o相离dr

14、切线的性质定理:圆的切线垂直于经过切点的半径

15、推论1经过圆心且垂直于切线的直线必经过切点

16、推论2经过切点且垂直于切线的直线必经过圆心

18、圆的外切四边形的两组对边的和相等,外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、

①两圆外离dr+r

②两圆外切d=r+r

③两圆相交r-rr)

④两圆内切d=r-r(rr)

⑤两圆内含dr)

初中数学知识点总结人教版篇七

一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

主要考察内容:

①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一ic函数与二元一次方程组,一元一次不等式的关系。

突破方法:

①正确理解掌握一次函数的概念,图像和性质。

②运用数学结合的思想解与一次函数图像有关的问题。

③掌握用待定系数法球一次函数解析式。

④做一些综合题的训练,提高分析问题的能力。

函数性质:

1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:

1、作法与图形:通过如下3个步骤:

(1)列表.

(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

2、性质:

(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3、函数不是数,它是指某一变化过程中两个变量之间的关系。

4、k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比例):

初中数学知识点总结人教版篇八

1.无理数

⑴无理数:无限不循环小数

⑵两个无理数的和还是无理数

2.平方根

⑴算术平方根、平方根

一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。

⑵开平方:求一个数的平方根的运算叫开平方

被开方数

3.立方根

⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.

⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.

⑶开立方、被开方数

4.公园有多宽

求根式、估算根式、根据面积求边长

5.实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)

运算顺序:a.高级运算到低级运算;b.(同级运算)从"左"

到"右"(如5÷×5);c.(有括号时)由"小"到"中"到"大"。

6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。

7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。至于倒数法和平方法不是很常见,所以只需简单了解即可。

10.计算是数学的基础,也是我们解决问题的必要手段。提高实数的运算能力,先要审题,理解有关概念。要注意零指数、负整指数、乘法、特殊角三角函数值、二次根式化简和绝对值等知识点。在计算时需要先确定符号,再确定结果,把好符号关。

初中数学知识点总结人教版篇九

1、根据自变量的取值范围对函数进行分段.

2、求出每段的解析式.

3、由每段的解析式确定每段图象的形状.

1、自变量变化而函数值不变化的图象用水平线段表示.

2、自变量变化函数值也变化的增减变化情况.

3、函数图象的最低点和最高点.

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2025年初中数学知识点总结人教版(九篇) 文件夹
复制