最新高中数学知识重难点归纳总结
文件夹
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。相信许多人会觉得总结很难写?这里给大家分享一些最新的总结书范文,方便大家学习。
1、单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
2、单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
2平方差公式
两数和与这两数差的积,等于它们的平方差
3完全平方公式
4二元一次方程组
1、方程中含有未知数,并且未知数的指数(或未知项的次数)都是1,像这样的方程叫做二元一次方程。
2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。
3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解(二元一次方程组的解可能会出现在选择题中验根问题)。
5、消元:将未知数的个数由多化一,最终解一元一次方程然后反代解决二元三元、逐一解决的想法,叫做消元思想。
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,_的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,_的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
三角形的重心
考核要求:知道重心的定义并初步应用。
向量的有关概念
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
二次函数的图像及其基本性质
考核要求:
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
确定事件和随机事件
考核要求:
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
事件发生的可能性大小,事件的概率
考核要求:
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
等可能试验中事件的概率问题及概率计算
考核要求:
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
数据整理与统计图表
考核要求:
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:
1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
补充:
1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
1、数据13,10,12,8,7的平均数是10
2、数据3,4,2,4,4的众数是4
3、数据1,2,3,4,5的中位数是3
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、整数和分数统称为有理数。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴。
5、在直线上任取一个点表示数0,这个点叫做原点。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7、由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则:减去一个数,等于加上这个数的相反数。
14、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
下面是小编为大家整理的,供大家参考。
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如立即行动起来写一份总结吧。我们该怎么写总结呢?下面是小编给大家带来的高三数学知识点重点难点,以供大家参考!
函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分.一般为2个选择题或2个填空题,1个解答题,而且常考常新。
在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。
在解答题中通常考查函数与导数、不等式的综合运用。高考数学函数与导数备考攻略如下:
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
8.求极值,函数单调性,应用题,与三角函数或向量结合。
三角函数
注意归一公式、诱导公式的正确性
数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;
任一x=a,x=b,记做ab
ab,baa=b
ab={x|x=a,且x=b}
ab={x|x=a,或x=b}
card(ab)=card(a)+card(b)—card(ab)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)ab,a是b成立的充分条件
ba,a是b成立的必要条件
ab,a是b成立的充要条件
1、集合元素具有
①确定性;
②互异性;
③无序性
2、集合表示方法
①列举法;
②描述法;
③韦恩图;
④数轴法
(3)集合的运算
①a∩(b∪c)=(a∩b)∪(a∩c)
②cu(a∩b)=cua∪cub
cu(a∪b)=cua∩cub
(4)集合的性质
n元集合的字集数:2n
真子集数:2n—1;
非空真子集数:2n—2
;一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
三角函数/数列
一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。
圆/坐标系与参数方程/不等式
一般全国卷第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。
概率
一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
注重对数学概念的理解
数学有很多概念需要我们去记住的。就比如说数学的函数部分,这个部分的特点就是数学概念多,对于概念的理解很重要。而且在实际的复习中,高三的学生需要对这一数学知识点加深重视,数学概念可以突出数学题的本质,也就能产生很多解决数学问题的方法。如果高三学生对于数学概念还是不够重视的话,数学题也不会做的很好。
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆c的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
最新高中数学知识重难点归纳总结(七篇)
文件夹