苏教版数学下册教案
文件夹
教案是教学过程中的重要工具,它可以帮助教师组织教学内容和指导学生学习。教案的编写需要充分考虑课堂教学的评价和反思。如果需要进一步了解教案的编写和教学设计,可以参考相关教育教学书籍。
一、“情境”与“知识”两条主线相互交融。
结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。
二、动手操作让学生亲身经历知识的形成过程。
动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的.学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。
三、数学阅读让学生感受数学的厚实的文化。
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件。
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、思考:0.2的倒数是多少?
五、小结:请学生说一说这节课学习了哪些内容。
六、作业:练习五3—8。
1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。
2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。
3、初步体会图形的相似,进一步发展空间观念。
1、讨论“练一练”
(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?
自己先算一算实际距离,然后与同座位的同学说一说。
汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?
孔雀园呢?
引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。
(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。
各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。
练习后交流思考的方法和具体的画法。
2、讨论练习十二第3题。
(1)出示题目,理解题目所包含的信息。
(2)飞机a在机场的什么位置?
各自在图上表示出来,然后汇报交流。
使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。
小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。
今天,我们继续进行整理和练习。
1、根据下面的条件,说说数量间的相等关系。
(1)师傅每小时加工的零件比徒弟的3倍少18个。
(2)一堆黄沙运走了30车后还剩下16吨。
(3)一条围巾的价钱比一副手套价钱的2倍多25元。
2、在括号里填上含有字母的式子
(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。
(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。
1、求x的值
(1)三角形面积275cm。 (2)长方形周长9m。
第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。
第(2)小题
先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。
学生列出的方程可能有以下几种情况:
2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2
问:这几个方程哪些你会解了?请你说说应怎样解?
(对于有困难的学生,教师要多加关注,注意个别辅导。)
交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。
指名3位学生分别板演。再集体交流。
2、第6题、第7题、第9题、第10题
让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。
3、第8题
先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?
再让学生解答问题,然后说说自己有什么感想。
学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。
再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。
通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?
1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
让学生先独立完成,再点评。
2.完成“练习与实践”第8题。
引导学生列举几组对应的数值。
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题。
第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)。
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题。
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)。
怎样求图上距离?怎样求实际距离。
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离。
1、分数乘法算式的意义:
注:【求一个数的几分之几用乘法解答】。
2、分数与整数相乘:
用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】。
3、分数与分数相乘:
用分子相乘的积作为分子,用分母相乘的。
积作为分母,最后约分成最简分数。
4、分数连乘:
通过几个分数的分子与分母直接约分再进行计算。
1、从具体情境中体会学习圆锥体积公式的必要性并进行大胆猜想。
2、在操作、观察、思考、探究等学习活动中推导出圆锥的体积公式,并能有条理的说出推导过程。
3、根据圆锥体积公式,解决简单的实际问题。
教学重难点。
教学重点:圆锥体积计算公式。
教学难点:圆锥体积计算公式的推导过程。
教学工具。
ppt课件。
教学过程。
一、激趣引入:
师:同学们都很棒,为了帮助大头儿子解决这个问题,这节课我们就来学习“圆锥的体积”的计算好吗?(板书课题)。
二、自主探究,合作交流。
一、认识圆锥的体积。
1、出示圆锥,引导学生说出圆锥的体积的意义。
课件出示:圆锥所占空间的大小叫做圆锥的体积。
2、演示排水法求圆锥的体积。
引导学生回忆不规则物体的测量方法说出排水法。
3、冰激淋不能用排水法求体积,要怎样求呢?
(二)教学例2.(探究圆锥的体积公式)。
1、引导学生猜想。
师:出示长方体、正方体、圆柱体。
同学们猜一猜,圆锥的体积计算应该和哪一个立体图形有关?
师:同学们再大胆猜一猜,圆锥的体积计算应该和什么量有关?
2、认识等底等高的圆柱和圆锥。
师课件演示怎样是等底等高的圆柱和圆锥。
板书:学生猜想。
3、实验验证猜想。
(1)明确实验方法、理解实验表和实验要求。
(2)学生实验。
(3)交流实验结果。
学生小组汇报,老师课件演示。
(4)得出结论。
师:通过实验你发现了什么?
生1:等底等高的圆柱是圆锥体积的3倍。
生2:等底等高的圆锥是圆柱体积的三分之一。
师:那不等底等高的圆柱和圆锥两个容器的容积存在这个倍数关系吗?
生:不存在。
明确哪个学生的猜想是对的。
4、推导圆锥的体积。
引导学生推导圆锥的体积。
师:根据我们得出的结论,你能写出圆锥的体积计算公式吗?
根据学生回答板书:v圆锥=13v圆柱=13sh。
师:想一想,根据刚才的实验,你发现了什么?要求圆锥的体积必须知道什么?
生:圆锥的体积等于它等底等高圆柱体积的三分之一。
师:为什么有三分之一?
生:因为实验时,圆锥向和它等底等高的圆柱里倒了三次。
师:我们知道了怎样求圆锥的体积,那么假如圆柱形冰淇淋和圆锥形的冰淇淋是等底等高,你们说大头儿子买哪种合算呢?(这时同学们异口同声回答答案)。
师:所以,数学来源于生活,生活离不开数学,生活中有很多问题都可以用我们所学的数学知识来解决。
5、练一练(运用公式):
师:我们继续来解决生活中的数学问题。
课件出示34页做一做第1题,学生独立解决,全班交流。
(二)教学例3.(运用公式拓展)。
课件出示例3。
学生读题,分析题意。
学生独立解决,全班交流。
规范做题格式。
(三)思考;求圆锥的体积,还可能出现那些情况?
引导学生梳理:
已知底面半径求体积;。
已知底面直径求体积;。
已知底面周长求体积。
三、巩固练习。
1、填空(课件)。
2、判断(课件)。
3、34页做一做第2题,学生独立做,集体订正。
四、课堂小结。
同学们,这节课有什么收获?
2025年苏教版数学六年级下册教案(通用9篇)
文件夹