最新高二上册数学知识点(精选20篇)
文件格式:DOCX
时间:2023-03-14 00:00:00    小编:小卢叔-

最新高二上册数学知识点(精选20篇)

小编:小卢叔-

总结是记忆的回顾,是经验的积累,更是前行的指南。总结应该突出重点,简练明了,不必罗列所有的细节。以下是一些成功人士的总结经验和方法,希望能够给我们一些启示和借鉴。

高二上册数学知识点篇一

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题。

1)费用、成本最省问题。

2)利润、收益问题。

3)面积、体积最(大)问题。

二、推理与证明。

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

不等式。

对于含有参数的一元二次不等式解的讨论。

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中出来。

高二上册数学知识点篇二

任何正整数都是0的约数。

4的正约数有:1、2、4。

6的正约数有:1、2、3、6。

10的正约数有:1、2、5、10。

12的正约数有:1、2、3、4、6、12。

15的正约数有:1、3、5、15。

18的正约数有:1、2、3、6、9、18。

20的正约数有:1、2、4、5、10、20。

注意:一个数的约数必然包括1及其本身。

2、约数的个数怎么求。

要用到约数个数定理。

需要指出来的是,a1,a2,a3……都是a的质因数。r1,r2,r3……是a1,a2,a3……的指数。

比如,360=2^3_3^2_5(^是次方的意思)。

所以个数是(3+1)_(2+1)_(1+1)=24个。

高二上册数学知识点篇三

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法。

1、先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2、先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2、分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准。

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题。

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

高二上册数学知识点篇四

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

【命题规律】命题多以解答题为主,属中等偏难的试题。

高二上册数学知识点篇五

1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2、几何概型的概率公式:p(a)=构成事件a的区域长度(面积或体积);

试验的全部结果所构成的区域长度(面积或体积)

3、几何概型的特点:

1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等、

4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的.梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件a的概率可以用“事件a包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

高二上册数学知识点篇六

3°若两头都不种:树的棵树+1=段数。

(2)若是一个闭合的图形,如:池塘一周、长方形或是三角形一周等,树的.棵树=段数。

二、运算律。

(1)加法:交换律:a+b=b+a乘法:交换律:a×b=b×a。

结合律:(a+b)+c=a+(b+c)结合律:(a×b)×c=a×(b×c)。

例1:37+56+63=56+(37+63)运用了(加法交换律和结合律)。

25×13×4=13×(25×4)运用了(乘法交换律和结合律)。

(2)乘法中配对的数字有:25×4,125×8……。

720÷54=720÷(6×9)=720÷9÷6……除法的性质。

125×25×32=(125×8)×(25×4)。

高二上册数学知识点篇七

2、椭圆的简单几何性质;3。

椭圆的参数方程;

4、双曲线及其标准方程;

5、双曲线的简单几何性质;

6、抛物线及其标准方程;

7、抛物线的简单几何性质。

1、平面及基本性质;

2、平面图形直观图的画法;

3、平面直线;

4、直线和平面平行的判定与性质;

5、直线和平面垂直的判定与性质;

6、三垂线定理及其逆定理;

7、两个平面的位置关系;

8、空间向量及其加法、减法与数乘;

9、空间向量的坐标表示;

10、空间向量的数量积;

11、直线的方向向量;

12、异面直线所成的角;

13、异面直线的公垂线;

14、异面直线的距离;

15、直线和平面垂直的性质;

16、平面的法向量;

17、点到平面的距离;

18、直线和平面所成的角;

19、向量在平面内的射影;

20、平面与平面平行的性质;

21、平行平面间的距离;

22、二面角及其平面角;

23、两个平面垂直的判定和性质;

24、多面体;

25、棱柱;

26、棱锥;

27、正多面体;

28、球。

1、分类计数原理与分步计数原理;

2、排列;

3、排列数公式;

4、组合;

5、组合数公式;

6、组合数的两个性质;

7、二项式定理;

8、二项展开式的性质。

1、随机事件的概率;

2、等可能事件的概率;

3、互斥事件有一个发生的概率;

4、相互独立事件同时发生的概率;

5、独立重复试验。

1、离散型随机变量的分布列;

2、离散型随机变量的期望值和方差;

3、抽样方法;

4、总体分布的估计;

5、正态分布;

6、线性回归。

高二上册数学知识点篇八

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

高二上册数学知识点篇九

1、本均值:

2、样本标准差:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变。

(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍。

(3)一组数据中的值和最小值对标准差的影响,区间的应用;。

“去掉一个分,去掉一个最低分”中的科学道理。

高二上册数学知识点篇十

(2)不可能事件:在条件s下,一定不会发生的事件,叫相对于条件s的不可能事件;。

(3)确定事件:必然事件和不可能事件统称为相对于条件s的确定事件;。

(4)随机事件:在条件s下可能发生也可能不发生的事件,叫相对于条件s的随机事件;。

(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例fn(a)=nna为事件a出现的概率:对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值nna,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

然说难度比较大,我建议考生,采取分部得分整个试。

提高数学成绩的方法。

一、课内重视听讲,课后及时复习。

接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

二、多做题,养成良好的解题习惯。

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

三、调整心态,正确对待考试。

考试的时候,大部分的题都是基础题,只有少数几道题时比较难的题,所以我们要调整好心态,鼓励自己,在做题的时候认真思考,不要浮躁,在考试之前做好准备,做一做常规的题型,不要为了赶时间而增加做题速度,要有条不紊的进行。

1.每做一道题的时候,不要总想着自己会怎样怎样粗心,首先要对自己有信心,这点很重要啊,否则,题目还没做,心理防线就已经被击垮了。

总之要对自己有信心。

2.确立信心之后,开始看题,不要想着快速的把题目看完就开始做题,题目应该多读几遍。我以前为了赶时间,就大概的看下题目,结果解了好长时间都没解出来,最后只好放弃。可是当老师讲的时候才发现,自己有一个条件没有看见。做数学嘛,讲究的就是细节问题。

3.我们老师说过,世界上不存在粗心的学生,只存在对某个知识点,某类题型不熟悉的学生,想要在考试中尽量不出错,就要对每一个知识点,每一种题型都非常敏感。见到一个题目就要联想到自己做过的,看过的一些东西。

虽然这样有点苛刻,但是我觉得,要想数学得高分,大量的练习是必不可少的。

4.写本错题集,将自己所有做错的题目在错题集上重新写一遍(不要直接把答案写上,而不抄题目,题目一定要抄,考试前看错题集的时候,能够节省很多时间,不用到处翻试卷,翻练习册去找题目),写答案的时候一定要写详细了,因为可能你这次懂了,但是下次你重新做这道题的时候,可能就不一定会做,所以错题的答案一定要写的详细。还有刚开始写错题集的时候,你会发现要写好多,任务很重,但是一段时间以后,你会发现,错的题目越来越少,有的时候只需写上一写不熟悉的公式就ok了。

高二上册数学知识点篇十一

椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。

2.双曲线。

标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.

3.抛物线。

1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。

2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。

3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。

用点差法解圆锥曲线的中点弦问题。

高二上册数学知识点篇十二

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2、生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益最大问题

3)面积、体积最(大)问题

1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

1、内容要目:直角坐标系中,曲线c是方程f(x,y)=0的曲线及方程f(x,y)=0是曲线c的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

高二上册数学知识点篇十三

(3)确定事件:必然事件和不可能事件统称为相对于条件s的确定事件;。

(4)随机事件:在条件s下可能发生也可能不发生的事件,叫相对于条件s的随机事件;。

(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例fn(a)=nna为事件a出现的概率:对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值nna,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

然说难度比较大,我建议考生,采取分部得分整个试。

高二上册数学知识点篇十四

1、圆的标准方程:

圆心为a(a,b),半径为r的圆的方程。

2、点与圆的关系的判断方法:(1),点在圆外(2),点在圆上(3),点在圆内。

4.1.2圆的一般方程。

1、圆的一般方程:

2、圆的一般方程的特点:

(1)①x2和y2的系数相同,不等于0.

②没有xy这样的二次项.

(2)圆的一般方程中有三个特定的系数d、e、f,因之只要求出这三个系数,圆的方程就确定了.

(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1圆与圆的位置关系。

1、用点到直线的距离来判断直线与圆的位置关系.

4.2.2圆与圆的位置关系。

4.2.3直线与圆的方程的应用。

1、利用平面直角坐标系解决直线与圆的位置关系;。

2、过程与方法。

用坐标法解决几何问题的步骤:

第二步:通过代数运算,解决代数问题;。

第三步:将代数运算结果“翻译”成几何结论.

4.3.1空间直角坐标系。

4.3.2空间两点间的距离公式。

高二上册数学知识点篇十五

学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

二、主动复习与总结提高。

(1)要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。

(2)把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求(对“锯,斧,凿子…”的使用总结),列进这两部分中的一部分,不要遗漏。

(3)在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。要做到三会两用。即:会代字表述,会图象符号表述,会推导证明。同时能从正反两方面对其进行应用。

(4)把重要的,典型的各种问题进行编队。(怎样做“板凳,椅子,书架…”)要尽量地把他们分类,找出它们之间的位置关系,总结出问题间的来龙去脉。就象我们欣赏一场团体操表演,我们不能只盯住一个人看,看他从哪跑到哪,都做了些什么动作。我们一定要居高临下地看,看全场的结构和变化。不然的话,陷入题海,徒劳无益。这一点,是提高高中数学水平的关键所在。

(5)总结那些尚未归类的问题,作为备注进行补充说明。

(6)找一份适当的测验试卷。一定要计时测验。然后再对照答案,查漏补缺。

三、

重视改错,错不重犯。

一定要重视改错工作,做到错不再犯。高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。而且,自己特爱粗心。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果新司机真正掌握了这一套,请问,可以同意他开车上街吗?恐怕他自己也知道自己还缺乏练习。一两次能正确地完成任务,并不能说明永远不出错。

图是初等数学的生命线,能不能用图支撑思维活动是能否学好初等数学的关键。无论是几何还是代数,拿到题的第一件事都应该是画图。有的时候,一些简单题只要把图画出来,答案就直接出来了。遇到难题时就更应该画图,图可以清楚地呈现出已知条件。而且解难题时至少一问画一个图,这样看起来清晰,做题的时候也好捋顺思路。

高二上册数学知识点篇十六

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题。

1)费用、成本最省问题。

2)利润、收益最大问题。

3)面积、体积最(大)问题。

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

对于含有参数的一元二次不等式解的讨论。

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

拓展阅读。

说明:以下内容为本文主关键词的百科内容,一词可能多意,仅作为参考阅读内容,下载的文档不包含此内容。每个关键词后面会随机推荐一个搜索引擎工具,方便用户从多个垂直领域了解更多与本文相似的内容。

4、因式分解:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。基本结论:分解因式为整式乘法的逆过程。高级结论:在高等代数上,因式分解有一些重要结论,在初等代数层面上证明很困难,但是理解很容易。

高二上册数学知识点篇十七

(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

高二上册数学知识点篇十八

高中的数学有选修,虽然是选修,但是高考还是会考的,所以我们还是得学好这部分内容。小编整理了相关资料,希望能帮助到您。

真命题:判断为真的语句.

假命题:判断为假的语句.

2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.

3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.

若原命题为“若,则”,它的逆命题为“若,则”.

4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.

若原命题为“若,则”,则它的否命题为“若,则”.

5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.

若原命题为“若,则”,则它的否命题为“若,则”.

原命题。

逆命题。

否命题。

逆否命题。

四种命题的真假性之间的关系:

两个命题互为逆否命题,它们有相同的真假性;。

两个命题为互逆命题或互否命题,它们的真假性没有关系.

7、若,则是的充分条件,是的必要条件.

若,则是的充要条件(充分必要条件).

8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.

当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.

用联结词“或”把命题和命题联结起来,得到一个新命题,记作.

当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.

对一个命题全盘否定,得到一个新命题,记作.

若是真命题,则必是假命题;若是假命题,则必是真命题.

9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.

含有全称量词的命题称为全称命题.

全称命题“对中任意一个,有成立”,记作“,”.

短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.

含有存在量词的命题称为特称命题.

特称命题“存在中的一个,使成立”,记作“,”.

10、全称命题:,,它的否定:,.全称命题的否定是特称命题.

12、椭圆的几何性质:

焦点的位置。

焦点在。

轴上。

焦点在。

轴上。

图形。

 

 

标准方程。

 

 

范围。

顶点。

轴长。

短轴的长。

长轴的长。

焦点。

焦距。

 

对称性。

关于。

轴、轴、原点对称。

离心率。

 

准线方程。

#formatimgid_3#。

 

 

 

13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

15、双曲线的几何性质:

焦点的位置。

焦点在。

轴上。

焦点在。

轴上。

图形。

 

 

标准方程。

 

 

范围。

或,

或,

顶点。

轴长。

虚轴的长。

实轴的长。

焦点。

焦距。

 

对称性。

关于。

轴、轴对称,关于原点中心对称。

离心率。

 

准线方程。

 

 

渐近线方程。

 

 

17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.

18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.

20、焦半径公式:

若点在抛物线上,焦点为,则;。

若点在抛物线上,焦点为,则;。

若点在抛物线上,焦点为,则;。

若点在抛物线上,焦点为,则.

标准方程。

 

 

 

 

图形。

 

 

 

 

顶点。

 

对称轴。

焦点。

 

 

 

 

准线方程。

 

 

 

 

离心率。

 

范围。

 

 

 

 

 

22、空间向量的概念:

在空间,具有大小和方向的量称为空间向量.

向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.

向量的大小称为向量的模(或长度),记作.

模(或长度)为的向量称为零向量;模为的向量称为单位向量.

与向量长度相等且方向相反的向量称为的相反向量,记作.

方向相同且模相等的向量称为相等向量.

23、空间向量的加法和减法:

求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则.

求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点,作,,则.

24、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍.

25、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律.

分配律:;结合律:.

27、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使.

28、平行于同一个平面的向量称为共面向量.

29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则.

30、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:.

32、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为.

33、等于的长度与在的方向上的投影的乘积.

34、若,为非零向量,为单位向量,则有;。

;,,;。

;.

35、向量数乘积的运算律:;;。

36、若,,是空间三个两两垂直的向量,则对空间任一向量,存在有序实数组,使得,称,,为向量在,,上的分量.

37、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得.

38、若三个向量,,不共面,则所有空间向量组成的集合是。

这个集合可看作是由向量,,生成的,

称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.

39、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方向建立空间直角坐标系.则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量.存在有序实数组,使得.把,,称作向量在单位正交基底,,下的坐标,记作.此时,向量的坐标是点在空间直角坐标系中的坐标.

40、设,,则.

若、为非零向量,则.

若,则.

则.

42、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定.点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以确定直线的位置,还可以具体表示出直线上的任意一点.

43、空间中平面的位置可以由内的两条相交直线来确定.设这两条相交直线相交于点,它们的方向向量分别为,.为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置.

44、直线垂直,取直线的方向向量,则向量称为平面的法向量.

45、若空间不重合两条直线,的方向向量分别为,,则。

47、若空间不重合的两个平面,的法向量分别为,,则。

48、设异面直线,的夹角为,方向向量为,,其夹角为,则有。

49、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有.

50、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则.

52、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为.

53、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为.

高二上册数学知识点篇十九

表示求解某一问题的数据通路。同时规定了处理的主要阶段和所有的各种数据媒体。

数据流程图包括:

a 指明数据存在的数据符号,这些数据符号也可能只能改数据所使用的媒体。

b 指明对数据执行的处理的处理符号,这些符号也可能指明该处理所用到的机器功能。

c 指明几个处理和数据媒体之间的数据流的流线符号。

d 便于读写数据流程图的特殊符号。

在处理符号的前后都应该是数据符号。数据流程图以数据符号开始和结束。

表示程序中的操作顺序。

a 指明实际处理操作的处理符号,它包括根据逻辑条件确定要执行的.路径的符号。

b 指明控制流的流线符号

c 便于读、写程序流程图的特殊符号

系统流程图表示系统的操作控制和数据流。

a 指明数据存在的数据符号,这些数据符号也可指明该数据所使用的媒体。

b 定义要执行的逻辑路径以及指明对数据执行的操作的处理符号

c 指明个处理和(或)数据媒体间数据流的流线符号。

d 便于读、写系统流程图的特殊符号

高二上册数学知识点篇二十

1、解方程法:

令f(x)=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:

利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

3、数形结合法:

转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制