鸽巢原理教案 小学数学下册鸽巢问题教案
文件夹
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
教材第110页第3题,练习二十五第8~13题。
【教学目标】
1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
【重点难点】
重、难点:解决三角形相关问题,画一个图形的轴对称图形。
【教学过程】
一、复习三角形
1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在
现实生活中的应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?
4.完成教材第110页的第3题。
二、复习轴对称、平移
1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.平移。
三、复习观察物体
在同一角度观察物体,最多能看到物体的几个面?
四、课堂练习
完成教材练习二十五第8~13题。
五、课堂小结
我们这节课复习了什么内容?你有什么收获?
六、同步训练
教学至此,敬请选用《新领程》相关习题。
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
ppt课件
教学过程:
一、复习导入(8分)
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)
8、尝试解答修改后的问题。
9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调
4、解决问题要注意:看清求什么率?找出对应的量。
5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固
1、说说下面百分率各表示什么意思。(1颗星)
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)
(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
(1分)突出“关键点”。谈谈本节课的收获。
提高优生的自主和自觉学习能力,进一步巩固并提高中等生的学习成绩,帮助差生取得适当进步,让差生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成基本能力。培优计划要落到实处,发掘并培养一批尖子,挖掘他们的潜能,从培养能力入手,训练良好学习习惯,从而形成较扎实基础,并能协助老师进行辅差活动,提高整个班级的素养和成绩。
二、学生情况分析
三、教材简析:
本册教材内容分为"圆柱和圆锥"、"正比例和反比例"和"总复习"三部分。"总复习"包括4个单元。
四、教学目的和要求:
1、使学生认识圆柱和圆锥,掌握它们的特征,认识圆柱的底面、侧面和高,认识圆锥的底面和高,会求圆柱的侧面积和表面积,掌握圆柱圆锥的体积计算方法。
2、使学生理解、掌握正比例、反比例的意义,能正确判断两种量是否成正比例、反比例。学会使用数对确定点的位置,懂得将图形按一定比例进行放大和缩小。理解比例尺的意义,能正确计算平面图的比例尺。提高学生利用已有知识、技能解决问题的能力,培养学生应用数学的意识和周密思考问题的良好习惯。
3、使学生比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。
4、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。
5、使学生牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单画图、测量等技能,进一步发展学生的空间观念。
6、使学生掌握所学的统计初步知识,能够看懂和绘制简单的统计图表,能对统计数据作简单的分析,并且能够计算求平均数问题。
7、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答所学的应用题和生活中一些简单的实际问题,进一步培养学生的思维能力。
五、教学措施:
1、进一步培养合理、灵活地演练计算能力。
2、提高学生的分析、比较和综合能力。
3、培养抽象思维和概括、判断、推理能力,以及以此类推、举一反三的能力。
4、培养思维的灵活性和敏捷性。
5、培养综合运用知识解决实际问题的能力。
6、加强学生的空间立体感。
7、加强口算练习,学会解答比较简单的整数、分数、小数四则混合运算,逐步提高学生四则计算的能力。
8、能掌握一些常见的数量关系和应用题的解答方法,逐步提高解答应用题的能力。
9、增加动手操作的机会,使学生获得正确的图形表象,正确计算一些几何形体的周长、面积和体积。
10、能掌握单位间的进率,能够正确进行名数的换算。
六、辅差措施
1、思想教育,转化观念端正学习态度。
2、根据学生的知识缺漏,有目的、有计划地进行补缺补漏。
3、多一份关心、帮助,努力发现他们的闪光点,多鼓励、表扬他们,使其体验成功、努力学习。
4、因材施教,重视基础知识的掌握。
5、课堂上多设计一些力所能及的问题,让他们回答,并逐步提高要求。
6、加强作业指导、抓质量。
7、开展一帮一活动,让优秀学生带动后进生,促使他们的转化。
8、加强家校联系,共同教育。
七、教学进度表
周次 时间 教 学 内 容
1 2.21/27 1、教学准备; 2、面的旋转
2 2.28/3.6 1、圆柱的表面积; 2、圆柱的体积
3 3.7/13 1、圆柱的体积; 2、实践与活动 3、练习一
4 3.14/20 1、变化的量; 2、正比例
5 3.21/27 1、画一画; 2、反比例
7 4.4/10 1、练习二; 2、整理与复习;
9 4.18/24 1、常见的量; 2、数的运算:运算的意义;
11 5.2/8 1、运算律; 2、用字母表示数;3、方程;
12 5.9/15 1、正比例、反比例;2、探索规律;
13 5.16/22 1、图形的认识:线与角;2、平面图形;
15 5.30/6.5 1、统计与概率; 2、可能性 3、解决问题的策略。
16 6.6/12 全面复习
17/19 6.13/7.3 全面复习、做好检测准备。
做好期末结束工作、写好各类小结。
教材第109页第1题,练习二十五第1、2、3、6题。
【教学目标】
1.复习加、减法和乘、除法各部分间的关系。
2.复习四则运算的运算顺序,并能正确进行计算。
3.运用加法和乘法的运算定律和相关的性质,进行简便计算。
【重点难点】
重点:运用加、减法和乘、除法各部分间的关系验算,四则运算的计算,运用运算定律进行简便计算。
难点:运算定律的运用,能进行简便计算。
【教学过程】
一、情景导入
问题导入。
1.加、减法各部分间的关系是怎样的?乘、除法各部分间的关系呢?
2.你知道四则运算的运算顺序是怎样的?你会计算吗?
3.你知道哪些运算定律?你会运用这些运算定律进行简便计算吗?
学生讨论、汇报,师评价。
二、探究新知
1.复习四则运算。
出示教材第109页第1题。
(1)根据第①个式子,先说说加法与减法的关系,再分别写出一个加法算式和一个减法算式。
(2)根据第②个式子,先说说乘法与除法的关系,再分别写出一个乘法算式和一个除法算式。
(3)你会根据第①个和第②个算式列出一个综合算式吗?再根据第①个、第②个和第③个算式列出一个综合算式。
(4)问:你能用一句话来总结四则运算的顺序吗?
学生组内讨论、交流、汇报。
小结:没有括号时先算乘除后算加减,有括号的要先算括号里面的。
2.复习运算定律。
(1)说一说我们学过哪些运算定律。
学生自由讨论、汇报,师评价。
(2)整理汇总运算定律,用字母表示。
加法:加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(3)想一想,说一说下面的计算运用了什么运算定律。(教材第109页第1题(4)题)
学生独立完成,组内交流,汇报发言,师评价。
三、基础巩固
完成教材练习二十五第1、2、3、6题。
四、课堂小结
问:这节课你有哪些收获?
小结:本节课我们复习了加、减法和乘、除法各部分间的关系,并利用它们之间的关系进行验算,又复习了四则运算的运算顺序、运算定律,巩固和加深了该知识,会运用运算定律进行简便计算。
五、同步训练
教学至此,敬请选用《新领程》相关习题。
1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点 经历抽屉原理的探究过程,并对抽屉原理的问题模式化
学生笔记(教师点拨) 学 案 内 容
一、知识回顾:(2分钟)
二、学生自学:(15分钟)
(1)自学例1
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1) 学生思考各种放法。
(2) 第一种放法: 第二种放法:
第三种放法: 第四种放法:
教学过程:
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。为什么?
如果每个文具盒只放( )铅笔,最多放( )枝,剩下()枝还要放进其中的一个文具盒,所以至少有()铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例2
2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?
4. 你能用算式表示以上过程吗?你有什么发现?
总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
三、小组合作交流(8分钟)
四、教师评价释疑。(10分钟)
五、当堂检测(5分钟)
1. 做一做。
(2) 说出想法。
如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下()鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
2. 做一做
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。剩下( )鸽子还要飞进其中的1个或2个鸽舍,所以,至少有( )鸽子要飞进同一个鸽舍里。
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。
3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。
教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。
教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。
教学过程:
一、 唤起与生成
1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。
2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!
3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。
确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。
4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!
二、探究与解决
(一)、小组探究:4放3的简单鸽巢问题
1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
2、审 题:
①读题。
②从题目上你知道了什么?证明什么?
(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)
③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?
“不管怎么放”:就是随便放、任意放。
“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。
“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探 究:
②活 动:小组活动,四人小组。
听要求!
活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。
听明白了吗?开始!
3、反 馈:汇报结果
可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)
追 问:谁还有疑问或补充?
预设:说一说你比他多了哪一种放法?
(2,1,1)和(1,1,2)是一种方法吗?为什么?)
只是位置不同,方法相同
(1)逐一验证:
符合总有一个笔筒里至少有2支铅笔。
第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。
第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
符合条件的那个笔筒在三个笔筒中都是最多的。
(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。
所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)自主探究:5放4的简单鸽巢原理
1、过 渡:依此推想下去
2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。
3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)
4、验 证:你们的猜测对吗?让我们来验证一下。
活动要求:
(1)思考有几种摆法?记录下来。
(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。
好,开始。(教师参与其中)。
5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法
(课件同步播放)
预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。
6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。
①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。
②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。
不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。
(三)、探究鸽巢原理算式
还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?
(好麻烦,是啊, 想想都觉得麻烦!)
3、平均分:为什么这样分呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:为什么一开始就要去平均分呢?
生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。
生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
师:看来,平均分是保证“至少”数的关键。
4、列式:
①你能用算式表示吗?
4÷3=1……1 1+1=2
②讲讲算式含义。
a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。
b、真棒!讲给你的同桌听。
5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。
5÷4=1……1 1+1=2
说说算式的意思。
a、同桌齐说。
b、谁来说一说?
师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。
(四)探究稍复杂的鸽巢问题
2、题组(开火车,口答结果并口述算式)
(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
7÷5=1…… 2 1+2=3?
7÷5=1…… 2 1+1=2
出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)
你认为哪种结果正确?为什么?
质 疑:为什么第二次还要平均分?(保证“至少”)
把铅笔平均分才是解决问题的关键啊。
(3)把笔的数量进一步增加:
8支铅笔放5个笔筒里,至少数是多少?
8÷5=1……3 1+1=2
(4)9支铅笔放5个笔筒里,至少数是多少?
9÷5=1……4 1+1=2
(5)好,再增加一支铅笔?至少数是多少?
还用加吗?为什么 10÷5=2 正好分完, 至少数是商
(6)好再增加一支铅笔,,你来说
11÷5=2……1 2+1=3 3个
①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)
②那同学们再想想,铅笔的支数到多少支时,至少数还是3?
③铅笔的支数到多少支的时候,至少数就变成了4了呢?
(8)算的这么快,你一定有什么窍门?(比比至少数和商)
(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)
3、观察算式,同桌讨论,发现规律。
铅笔数÷笔筒数=商……余数” “至少数=商+1”
你和他们的发现相同吗?出示:商+1
4、质疑:和余数有没有关系?
(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)
(五)归纳概括鸽巢原理
1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?
100÷30=3…… 10 3+1=4 至少数是4个
(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)
2、推广:
(1)书本放进抽屉
8÷3=2……2? 2+1=3
(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)
(2)鸽子飞进鸽巢
11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?
11÷4=2……3? 2+1=3
答:至少有 3只鸽子飞进同一只鸽笼。
(3)车辆过高速路收费口(图)
(4)抢凳子
书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。
3、建立模型:鸽巢原理:
知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。
5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?
有信心用我们发现的原理继续接受挑战吗?
3、巩固与应用
那我们回头看看课前小魔术,你明白它的秘密了吗?
1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。
答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。
正确应用鸽巢原理是表演成功的秘密武器!
2、飞镖运动
同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。
课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。
在练习本上算一算,讲给你的同桌听听。
谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)
41÷5=8……1? 8+1=9
在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。
3、我们六年级共有367名学生,其中六(2班)有49名学生。
(1)六年级里至少有两人的生日是同一天。
(2)六(2)班中至少有5人的生日是在同一个月。
他们说的对吗?为什么?
同桌讨论一下。
谁来说说你们的想法?
(1、367人相当于鸽子,365、或366天相当于鸽巢......
? 2、49人相当于鸽子,12个月相当于鸽巢......)
真理是越辩越明!
3、星座测试命运
说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?
你用星座测试过命运吗?你相信星座测试的命运吗?
我们用鸽巢原理来说说你的想法。
全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。
4、柯南破案:
大爷:是什么手机号呢?这么贵?
年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!
老大爷:哦!
听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。
聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?
(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)
4、 回顾与整理。
这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!
下 课!
板书设计:
鸽? 巢? 问? 题
物体? 抽屉 至少数
4? ÷ 3 =? 1……1 1+1=2?
5? ? ÷ 4? =? 1……1? ? ? 1+1=2?
7? ? ÷ 5? =? 1……2? ? ? 1+1=2
9 ÷ 5? =? 1……4? 1+1=2
11 ? ÷? 5? =? 2……1 ? 2+1=3
28 ÷ 5? =? 5……3? 5+1=6
100 ? ÷ 30? =? 3……1 3+1=4?
m ÷ n = 商……余数? 商+1
1.了解两点确定一条直线和两条相交直线确定一个点,并能区分直线、线段和射线。
2.能结合具体情境认识角,会画出指定度数的角。
3.培养学生的动手能力和互相交流合作的意识。
重点:区分直线、线段和射线,认识角并会画角。
难点:理解线与角间的内在联系与区别。
量角器、尺子、课件。
师:我们在小学阶段学过哪几种线?认识哪些角?
生1:我们学过直线、射线、线段。
生2:我们认识直角、锐角、平角、钝角、周角。
师:这节课我们一起复习“线与角”。(板书课题:线与角)
1.复习线段、射线和直线。
课件出示:
师:你能说出上面的图形各是什么吗?
生:直线、射线、线段。
师:你能找出线段、射线、直线的区别吗?
学生分组讨论,教师巡视、辅导。
先请学生汇报结果,再给出下表,让学生完成。
端点个数 能否度量
线段
射线
直线
师:线段、射线和直线有什么联系?(线段和射线是直线的一部分)
师:长方形、正方形、三角形、平行四边形,它们的边是直线还是线段?(线段)
师:角的边是直线吗?
生:不是,角的边是射线。
2.角的整理与分析。
(1)让学生自己任意画一个角。
师:根据你画的角说一说,关于角,我们都学习了哪些知识?(板书:角)
教师画出一个角。
(2)学生回答,教师板书。
师:什么叫角?角的各部分名称是什么?
师:计量角的单位是什么?角的大小与什么有关?与什么无关?怎样画角?
师:按角的度数,角可以分为哪几种?
师根据学生的回答板书。
生1:由一点出发引出两条射线所组成的图形,叫作角。角由一个顶点和两条边组成。角的计量单位是度,符号是“°”。
生2:角的大小与两边张开的大小有关,与边的长短无关。
生3:根据角的度数,可以把角分为锐角、直角、钝角、平角、周角。
师:锐角是怎样的角?(教师画出图形并写出相应的特征)
师:大家能画出其余几种角的图形并说出它们的特征吗?
生:锐角是小于90°的角;直角等于90°;钝角大于90°且小于180°;平角等于180°;周角等于360°。
3.垂线和平行线。
师:在同一平面内,两条直线有哪几种位置关系?
生:相交(互相垂直与不垂直)和平行。
师:小组内互相说说什么叫互相垂直,什么叫平行线。
教师分别画出一组互相垂直和互相平行的直线。
生1:两条直线相交成直角时,这两条直线叫作互相垂直,一条直线叫作另一条直线的垂线。
生2:在同一平面内,不相交的两条直线叫平行线。
师:平行线间的距离有什么特点?
生:处处相等。
师:如何画一条直线的垂线和平行线?
学生分组讨论、交流,然后师生共同总结。
师:通过今天的复习,你掌握了哪些知识?
生1:能正确区分直线、线段和射线。
生2:能画出指定度数的角。
线与角
1.线
顶点个数 能否度量
线段 2 能
射线 1 不能
直线 无 不能
a 类
1.填空。
(1)线段有()个端点,射线有()个端点,直线()端点。
(2)两条直线相交组成4个角,如果其中一个角是90°,那么其他三个角是()角,这两条直线的位置关系是()。
(3)6时整,时针与分针所成角的度数是()。
(4)()决定了角的大小。
(5)135度角比平角小()度,比直角大()度。
2.判断。(对的在括号里画
估算。(教材第77~78页)
1.能结合具体情境进行估算并解释估算的过程,会选择合适的估算方法。
2.培养学生的估算习惯。
3.在解决具体问题的过程中感受估算的作用。
重点:能结合具体情境进行估算并叙述估算的过程。
难点:选择合适的估算方法。
课件。
课件出示教材第77页第2个主题图。
师:根据你估算的结果判断应该去哪个影院看电影。
生:应去星华影院。
师:六年级大约有多少人?
生:大约有270人。
师:这节课我们就一起来复习“估算”。(板书课题:估算)
师:在生活学习中,哪些时候要用到估算呢?
生1:买东西的时候要估算带的钱够买几件商品。
生2:计算前可以进行估算。
生3:计算后可以用估算的方法验证结果是否正确。
师:大家说得都很好,那么刚才那道题大家是用什么方法进行估算的?请你把自己的估算方法和小组内同学说一说。
生1:我的估算方法是把几个班的人数都看成40,40×6是240,所以应去星华影院。
生2:我的估算方法是把几个班的人数都看成50,50×6是300,所以应去星华影院。
生3:我的估算方法是把几个班的人数都看成45,45×6是270,所以应去星华影院。
师:大家都很棒,说出了不同的估算方法,希望大家在解决其他问题时也会选择合适的估算方法。
师:通过今天的复习,你掌握了哪些知识?
生:进一步理解了估算的过程,会选择合适的估算方法进行估算。
a 类
1.估一估下面各题的结果,并把错误的改正过来。
2.解决问题。
(2)一本故事书有268页,小明每天看35页,一周能看完吗?
(考查知识点:估算的意义;能力要求:能结合具体情境进行估算,会选择合适的估算方法)
b 类
某校组织学生春游,若租用45座客车,则有15人没有座位,若租同样数量的60座客车,则余一辆空车,其余刚好坐满。已知45座客车租金为220元,60座客车租金为300元。
(1)这个学校一共有学生多少人?
(2)怎样租车最划算?
(考查知识点: 估算的应用;能力要求:利用估算解决具体的实际问题)
课堂作业新设计
a 类:
1.略
2.(1)够(2)不能(3)能
b 类:
(1)240人
(2)租4辆45座客车和1辆60座客车最划算。
教材第77页“巩固与应用”
1.够不够
2.略
3.49≈5050×30=1500(字)15001528不能
4.略
5.小女孩儿估算的结果比精确结果大,小男孩儿估算的结果比精确结果小。
2025年六年级鸽巢原理教案 小学数学六年级下册鸽巢问题教案(7篇)
文件夹