最新小学数学比教案大全
文件夹
教案是教师进行教学计划和组织的重要依据,能够有效管理教学过程。那么我们该如何编写一份好的教案呢?首先,教案应该明确教学目标,指导学生的学习方向和达到的预期结果。其次,教案应该合理安排教学步骤,从而使学生逐步掌握知识和技能。另外,教案中的教学方法应多样化,并充分利用教学资源,提升教学效果。最后,教案还应有具体的教学评价方法,用以检验学生的学习情况和教学效果。希望大家能够通过阅读这些范文,掌握一些教案编写的技巧和方法。
3、导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
1、教学例3比的基本性质。
(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?
2、教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18(2)(3)1、8:0、09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。
教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。
教学目标:
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
教学准备:课件。
教学过程:
一、情境导入。
课件出示:女生与男生的人数比是5:7。
师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?
【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。
二、实例探究。
(一)自主探索。
1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。
师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?
2.学生独立尝试。
3.同桌交流。
师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)。
4.汇报:
请不同做法的学生上台板演,交流汇报。
预设(1):48÷(5+7)=4(人);。
女生:4×5=20(人);。
男生:4×7=28(人)。
师:还有不同的解决方法吗?
预设(2):女生:(人);。
男生:(人)。
师:这种方法中,是什么意思?呢?
5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。
【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的'设计不仅降低了学习的难度,而且激发了学生的学习兴趣。
(二)揭示课题。
师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)。
(三)实践尝试。
出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。
1.阅读与理解。
浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)。
师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)。
2.分析与解答。
预设(1):每份是500÷5=100(ml),浓缩液有100×1=100(ml),水有100×4=400(ml)。
师:这里的5表示什么?(把总体积平均分成5份。)。
预设(2):浓缩液有(ml),水有(ml)。
师:表示什么?(浓缩液占总体积的;)。
呢?(水占总体积的。)。
3.回顾与反思。
师:可以用怎样的方法对结果进行验证?
预设:看浓缩液与水的比是不是等于1:4。
小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。
【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
三、实践应用。
(一)基本练习。
1.师:打开教材第55页,看第一题。
(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。
(2)交流:说说你的方法。
2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。
师:请你来设计一下,可以怎么分配?
预设一:1:1。
师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)。
师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
对于其余各种分配方法,都让学生快速算一算再交流。
(二)发展提高。
1.师:增加点难度行不行?我把这一题变一下。
(1)比较:这一题和前几题相比,有什么不同?
(3)学生尝试。
(4)交流算法。
师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。
师:这几位同学的方法有什么共同点?有什么不同点?
(1)比较分析:
师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?
师:我们可以先求出比,再按比进行分配。
(2)学生独立尝试,交流算法。
(三)小结。
师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?
师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。
【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。
四、课堂总结。
1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)。
2.课外延伸。
师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。
【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。
已学了比、求比值、化简比按比例分配等知识。
学习目标。
1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。
导学策略。
练习。
教学准备。
习题。
教师活动。
学生活动。
一、复习概念。
什么叫做比?
怎样求比值与化简比?
求比值与化简比有什么联系与区别?
二、独立练习。
第1题练习后说一说自己的'方法。
第2题巩固化简比的方法。
第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。
第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。
三、你知道吗?
学生自学,然后教师介绍黄金分割。
口答并结合练习加以说明。
列表分析。
教学反思。
还可以。
一、利用旧知学习新知的学习方法。如在教学例1前,先让学生做一道这样的练习题:学校有8个篮球,12个排球,篮球和排球个数的比多少?让学生发表各种意见,然后讨论篮球和排球的个数比是写成8:12好还是写成2:3好?在教学例1时,先把例题转化成约分:14/21,1.25/4这种形式,让学生运用以前的知识经验进行计算;接着让学生把它看成比的形式,该怎么读呢?学生齐读。教师直接指出这就是我们要学的化简比;从而使学生在不知不觉中进入新的学习。学生学习起来也感觉很简单,容易接受。
二、加强对比,沟通知识间的联系。如8:12和2:3进行比较,通过讨论,发现比的特点,让学生更清晰什么是最简单的整数比;把约分转化成化简比,鲜明的对比,明确地理解化简比的方法。
三、从故事的情景中引入课题,激发学生学习的积极性,并突出学习化简比的必要性。在教学中,本人讲述了一个《商人和上帝》的故事,商人向上帝倾诉自己的努力,却得不到应有的回报,希望能得到上帝的支持和帮助;于是,上帝提出这样的要求:在所给的比当中选择一个比,就是你的朋友与商人的。商人只要从上帝提出的要求中(2.4:4.8、1/6:1/3、36:72等等)选择一个比,上帝就会无条件地送给他们所想的礼物;从商人的思考、难以选择的困惑中,让学生体会到化简比的必要性。
这节课,学生都充满积极向上的信心,都在不断地探索中不断获得新知,在学生的练习反馈中,也发现大部分学生能掌握了这一知识点。
苏教版国标本六年级上册p68~70认识比例1、例2以及相应练习。
【教学目标】。
1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。
3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。
【教学重难点】。
理解比的意义,比与分数、除法的关系。
【教学过程】。
一、创设情境,引入比。
1.图片激趣,引发讨论,设置悬念。
2.电脑呈现例l主题图。
3.揭题:比较两个数量之间的关系还可以用一种新的方法比。
二、自主探索,认识比。
(一)初步理解比。
1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。
果汁的杯数相当于牛奶的'2/3,我们还可以说成果汁与牛奶杯数的比是2比3。
牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2。
2.看书自学,汇报交流:
(1)写法。
(2)各部分名称。
(3)比是有序的。
3.完成p68试一试。
(二)深入认识比。
1.认识不同量之间的比。
(1)生读例2,师:读了这条信息,你能提出什么数学问题?
(请学生分别算出它们的速度,填入表格。)。
(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。
交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。
(3)追问:900:15表示什么?900:20呢?(速度)。
2.丰富对不同类量的两个数量比的认识。
张祥买3本笔记本用了10.5元。
提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?
3.总结概括比的意义。
(1)观察一下这几组式子,总结相同的特点。
(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?
(3)小结:两个数的比归根结底表示的都是两个数相除。
三、自学课本,内化比。
1.自学课本p69。
2.反馈:通过看书,你还知道了什么?
*求比值。
*分数形式的比。
*理解比、除法、分数之间的关系。
单元教学目标:
1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。
2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。
单元教材分析:
这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:
1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
2、注重引导学生利用比的意义解决实际问题。
教学课时:12课时。
内容。
课时数。
生活中的比。
比的应用。
练习三。
机动。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
倒数的认识、分数除法的意义与计算、解决问题。
通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则混合运算及解决相关实际问题的方法;另一方面也进一步加深了学生对乘除法关系的理解,体会数学知识方法的内在联系,为解决有关分数的实际问题提供更多的支持,同时也为后面学习比和比例、百分数打下坚实的基础。
本单元是在学生已经掌握了分数乘法、解方程等知识的基础上进行教学的。本单元的学习内容与下一单元比的相关知识联系紧密,将分数除法安排在比的前面进行学习,为更好地学习下一单元的内容奠定了知识基础。
知识与技能
过程与方法
1、理解倒数的意义,掌握求一个数的倒数的方法。
2、通过实例,使学生知道分数除法的意义与整数除法的意义相同。
3、理解并掌握分数除法的计算方法,明确算理。
4、会用算术方法及列方程解答分数除法问题。
5、能运用不完全归纳法总结出倒数的意义。
6、在教学分数除法的计算方法时,用折纸的方法推导计算结果,体现了数形结合思想;把除法计算转化成乘法计算,渗透了转化思想。
7、在探究倒数意义的过程中激发学生探究数学的兴趣,并能付诸行动。
8、体会数学知识之间的内在联系,促进学生整体思考能力的提升。
9、能积极参与数学活动,对数学有好奇心和求知欲。
10、体验获得成功的乐趣。
1、掌握求一个数的倒数的方法。
2、理解并掌握分数除法的意义、算理及计算方法,会用算术方法及列方程解答分数除法问题。
1、理解分数除法的算理。
2、运用分数除法的相关知识解决实际问题。
本单元的内容主要包括百分数的意义和读写法,百分数和分数、小数的互化以及用百分数解决问题。
百分数在生活中有着广泛的应用,人们常用百分数对事物进行描述、分析、统计、比较。虽然学生在日常生活中已经大量接触了百分数,但是对百分数的意义以及其应用价值的认识还处于模糊阶段。本单元在学生学习了整数、分数、小数相关知识的基础上,正式认识百分数。百分数表示的是一个数是另一个数的百分之几的数,因此,它是一种特殊的分数,有关百分数的计算与应用都可以由分数的相关知识迁移过来。由于百分数与实际生活联系紧密,学习百分数对理解和判断生活中相关数据信息以及运用百分数解决日常生活中的实际问题有着重要的意义。
六年级上册主要教学百分数的意义及一般应用,六年级下册教学百分数的特殊应用(如利率、折扣、成数)。两部分内容的着眼点有所不同,六年级上册的教学重点是利用知识的迁移,认识百分数的意义及一般性应用;而六年级下册的教学重点是了解百分数在生活中一些特殊领域的应用,更强调对其实际意义的理解。
备课目标
知识与技能
过程与方法
情感、态度与价值观
1.理解百分数的意义,会正确读写百分数,会用百分数表述生活中的一些数学现象。
2.掌握小数、分数和百分数的互化方法。
3.在理解、分析数量关系的基础上,正确解决有关百分数的实际问题。
4.经历探究百分数意义的过程,积累探究问题的经验。
5.经历探究小数、分数和百分数互化方法的过程,体会转化、类比、迁移等数学思想方法。
6.经历用百分数解决问题的过程,学习解决问题的策略,提升解决问题的能力。
7.在探究百分数的意义的过程中,体会数学与生活的密切联系。
8.积极参与数学活动,激发好奇心和求知欲。
9.在运用数学知识和方法解决问题的过程中,认识数学的价值。
重点:
1.理解百分数的意义及掌握百分数与小数、分数之间的互化方法。
2.用百分数解决问题。
难点:
1.百分数和分数在意义上的区别。
2求比一个数多(或少)百分之几的数是多少。
知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。
情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。
教学重难点重点:会运用商不变的性质或分数的基本性质化简比。
难点:运用比的化简解决生活中的一些实际问题。
教学过程。
一、复习铺垫,揭示课题。
1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?
2.比与除法、分数有什么关系?
3.这节课我们继续学习关于比的知识(板书课题——比的化简)。
4.看了这个课题,你想知道些什么?
二、创设情境,探究新知。
1.体会化简比的必要性。
师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?
根据学生回答,课件出示相应的数据信息:
蜂蜜水。
号杯:3小杯12小杯。
号杯:4小杯16小杯。
师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?
预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。
生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。
教师适时引导学生找出蜂蜜与水之间的比,并板书:
1号杯:3:12。
2号杯:4:16。
师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。
师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:
1号杯:3:12=3/12=1/4=1:4。
2号杯:4:16=4/16=1/4=1:4。
师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)。
2.理解化简比。
师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。
(1)学生独立思考,试着写一写,并同桌交流自己的发现。
(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。
3.归纳比的基本性质。
师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)。
4.揭示“最简整数比”。
师:分数约分要注意什么?比的化简又要注意什么?
分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。
5.化简比的方法。
师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)。
化简下面的比:
24:42120:60。
1)独立尝试。(指明两人板演)。
交流:说说你的思路。(方法、根据)。
2)小组活动:(课件出示)。
化简下面的比:
0.7:0.82/5:1/4。
思考:这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)。
3)归纳:怎样化简比?
小组讨论、全班交流。
4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。
三、巩固应用,解决问题。
1.化简比:(带的为选做)。
(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)。
21:240.3:1.54/5:5/7。
1:4/50.12:60.4:1/4。
2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。
3.教材第73页“练一练”第4题。
(1)学生独立完成(1)、(2)两题,集体订正。
(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。
四、全课总结。
师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
教学内容:
课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。
教学目的:
教学过程:
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。
使学生理解比的基本性质,掌握化简比的方法。
一、复习。
1.除法中的商不变规律是什么?
2.分数的基本性质是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
1.教学比的基本性质。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:在比中有什么样的规律?
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
最新小学数学六年级比的教案(大全12篇)
文件夹