高考数学解题技巧
文件夹
总结不仅能够反思过去,还能够为未来的行动提供参考和指导。阅读是开拓眼界、提高写作水平的有效途径,可以通过阅读优秀作品来学习写作技巧和表达方式。以下是小编为大家推荐的一些舞蹈教学资源和演出视频,希望能激发大家的舞蹈激情。
周日,扬子晚报和学大教育将共同邀请江苏省高考数学阅卷点专家组成员曹安陵老师开讲高考数学复习之道。相信在他的点拨下,考生一定能够用好最后的几十天时间,做好应对数学考试的准备。
“有的学生做题目,同一类型的题,第一次做会错,第二次做还错,主要原因就是不总结。”曹安陵老师坦言,不少人觉得数学就是要多做题。“不能说做题没用,但是如果做的题目不好,做完题不进行有效总结,那么基本没多大效果。”除了错题之外,做对的题同样可能在下次做错。因此在复习中,除了对错题进行总结之外,对一些虽然做对了,但是掌握得还不够扎实的题目,也要认真梳理,巩固相关知识点。
据了解,去年江苏省高考数学状元最终得了154分。让大家感到意外的是,他竟在一道相对容易的题目上丢了5分。原来,数学状元在解题过程中,有一个关键的步骤没了,按照要求不能得分。专家提醒,在高考答题中,千万不要表现出思维的跳跃性,在按得分点和步骤给分的高考中,考生跳过的是解题步骤,丢掉的是考试分数。
有不少数学基础相对较差的考生觉得,基础没打好,现在就算恶补也来不及。对此,曹安陵老师表示,“数学绝对不能放弃,因为即使原先基础比较差的学生,也在利用最后一段时间进行冲刺。”学生只要肯下工夫,时间还是相对充裕的。
曹安陵表示,在周日的讲座上,他将重点教学生研读《考试说明》,另外还有不少阅卷中的体会与考生交流。另悉,在此次讲座现场,还将为考生带来江苏志愿填报专家熊丙奇教授研发的“高考志愿填报服务包”,其中包含高考志愿填报模拟系统前程卡,它集合了高考志愿填报专家熊丙奇团队10多年的专业经验。
曹安陵,江苏省数学特级教师,南京市首届学科带头人,高中数学中心组成员,省高考数学命题组成员和阅卷点专家组成员,中学数学学科特级教师工作室负责人。
熊丙奇,上海交通大学教授,著名高考志愿咨询及职业规划专家、21世纪教育研究院副院长。20xx年、20xx年在江苏省主讲高考志愿填报公益讲座达100多场。
高考的特点是以学生解题能力的高低为标准的一次性选拔,这就使得临场发挥显得尤为重要,研究和总结临场解题策略,进行应试训练和心理辅导,已成为高考辅导的重要内容之一,正确运用数学高考临场解题策略,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,建立神经联系,挖掘思维和知识的潜能,考出最佳成绩。
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
函数与导数是高考数学中极为重要的一部分,函数的特点和方法贯穿了高中数学的全过程,主要是考函数的性质,如何利用导数作为工具来解答。考查的内容有:(1)导数的几何意义;(2)利用导数求函数的单调区间、极值、最值、证明不等式等。
解这部分题目时用到的方法主要是:
(1)特殊函数法。
例如在给定函数的一些性质来研究它的其他性质时,由于没有给出具体的函数解析式,所以我们在解题时往往无从下手,因此可以选用特殊代替来解题。
(2)换元法。
在解题时,我们一般是将抽象的、陌生的、复杂的问题转化为简单的、具体的问题,例如求函数的最值等问题。
(3)待定系数法。
我们知道待定系数法是求函数解析式的一种方法,若已知函数的类型,可以设出相对应的函数解析式,然后根据题目给定的条件求出未知的系数即可。
(4)构造函数法。
导数是解决函数问题的一个有力工具,但是有些与函数有关的问题无法直接用导数来处理,因而需要通过构造新的函数来解决;特别的当给定关于导数的不等关系时,常常要构造新的函数。
(二)三角函数与解三角形。
通过近几年的高考试题来看,三角函数与解三角形考的分值大约是18分,主要考查同角三角函数的基本关系和诱导公式,三角函数的图像和性质,三角恒等变换和正余弦定理。考查的内容有:(1)利用降幂公式和辅助角变换讲复杂的三角函数解析式化为标准形式,然后研究其性质。(2)利用角变换法,化弦法,降幂发来进行三角函数的求值、化简、证明。
解这部分题目时常用到的方法有:
(1)特殊值代入法。
在做选择题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊位置、特殊图形等对选项进行验证,从而排除不符合题目要求的选项,间接地得到正确答案。
(2)排除法。
对于解三角形的一些选择题时,直接利用三角恒等变换正弦余弦定理比较复杂,可以结合题目和选项的特点进行有效排除,得到答案。排除时可结合特值法、数形结合法等。
(三)数列。
数列是高中代数的重要内容,主要考察学生的思维能力,解决问题能力和推理能力。考查的内容有:(1)求数列的通项公式。(2)数列的基本性质。(3)数列求和。(4)数列和不等式的关系。
解这部分题目时常用到的方法有:
(1)构造法。
给出递推关系求数列的通项公式是一种常见题型,有的题目根据给定的递推关系时无法直接得到通项公式,要根据递推关系式的结构特征构造恰当的辅助数列使之转化为特殊数列的问题。
(2)错位相减法。
错位相减法是求解由等差数列和等比数列之积组成的数列的前n项和的方法。首先,将数列的通项公式分解为等差数列和等比数列的乘积,并求出公差和公比。其次,写出前n项和的表达式,并且在前n项和的两面同时乘以公比,两式作差。最后,根据差式的特征求和。
(四)解析几何。
解析几何在高考中占的比例很大,主要考查学生数形结合思想、函数思想和运算能力。考查的内容有:(1)圆锥曲线的定义及其性质。(2)直线和圆锥曲线的位置关系。(3)与圆锥曲线有关的轨迹、距离、变量等问题。
解这部分题目常用的方法有:
(1)图形分析法:
圆与椭圆、双曲线、抛物线的最大不同之处就在于它丰富的几何性质,比如“垂直于弦的直径平分弦”、“圆的对称性”、“切线的性质”等,因此在解决有关圆的问题时应有意识的运用这些性质,认真分析图形,减少计算,避免出错。
(2)特殊位置法:
此类问题往往比较复杂,可以用一些特殊的位置代表一般的情形,对于这些特殊位置结论也是成立的。
(五)立体几何。
立体几何试题一般共有两道,试题淡化特殊的技巧,大多数试题由常规解法,同时在知识的应用上又有一些灵活性,但总体的考查知识点是稳定的。考查的内容有:(1)三视图的体积和表面积。(2)基本概念。(3)线面关系,面面关系等。
解这部分题目常用的方法有:
(1)模型法:
立体几何中有很多常用的模型,在研究一些比较复杂的位置关系时,可以借助它们来解决。如在讨论“一个点出发的三条两两垂直的直线”问题时,就可以放在长方体模型中来解决。
(2)向量法:
在建立空间直角坐标系后,就可以用坐标表示相关的向量,这样,线面关系的逻辑推理就转化为相应直线的方向向量和平面的法向量之间的坐标运算,用代数运算代替了空间线面关系的逻辑推理,使证明和运算过程程序化。
(六)概率与统计。
高考对概率统计的考查主要是考查古典概型、几何概型、互斥事件概率的基本运算,主要以古典概型为考查主体来考查学生的分析问题和解决问题的能力和分类讨论的思想。考查的内容有:(1)用样本的特征去估计总体的特征(2)用随机抽样的三种方法从总体上抽取样本。(3)理解频率分布直方图、条形图、茎叶图的意义和作用。
(1)正难则反法:
求时间a的概率时,如果时间a包含的情况比较复杂,可以利用对立事件的概率关系来求解,体现了“正难则反”的转化思想。
(2)关键点法:
在给定的n个样本,所求的回归直线方程,我们很容易发现所求的回归直线方程一定经过样本的中心点,在解决一些统计问题时如能抓好这个关键点可起到事半功倍的效果。
(七)选考内容。
在选考内容中,有极坐标与参数方程、几何证明和不等式三种,考查的内容有:(1)含有绝对值不等式的解法以及不等式的证明问题。(2)圆与三角形的性质及其运算相结合的问题,以圆的切线为主,考查相应定理的应用。(3)参数方程与普通方程的互化、极坐标与直角坐标的互化,以及研究曲线的方程或位置关系、最值等问题。
解这部分题目常用的方法有:
分离参数法:分离参数法就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围确定参数的取值范围的方法,解决含参数不等式中的取值问题。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
2、沉着应战,确保旗开得胜,以利振奋精神。
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
3、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
4、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
5、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
6、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
7、确保运算准确,立足一次成功。
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
8、讲求规范书写,力争既对又全。
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想。
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想。
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤。
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
1.学习的心态。
多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。
2.备考的方向。
什么是备考方向?所谓备考方向就是考试方向。在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。
题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。
3.训练的方式。
每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度:
(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获。
将自己十几年的苦读浓缩在2个小时中,难免会心情紧张,而心理的平静,即“考试中的平常心”是将自己水平正常发挥的重要基础,所以要做好充分的心理上的调节和准备。拿到试卷后切忌匆匆作答,而应通览全卷,在最短的时间内把握好针对自己学习水平的易、中、难题,做到初步的心中有数,另外不一定按照题目的序号顺序解题,而应在刚才的基础上选择自己最容易得分的题目进行解答,将分值拿到手,稳定自己的心理,同时对自己的思维进行热身,使自己的思维活动尽快达到高峰,不应过于计较暂时性的“一城一地”的得失,防止进入“熟悉知识的死亡牛角尖”,急躁,造成心态的失衡,大脑一片空白,使得原来非常熟悉的知识和题目出现不应有的错误。
在答题的过程中,应十分注意对试卷中不同题型的把握,采取相应的处理方法。对于选择题,由于答案已经给出(在四个选项中),有相当大的提示性,所以应充分利用分析选项的方法,提炼选项中蕴藏的丰富的信息,使用排除、验证、转化、分析、估算、极限等方法帮助自己进行甄别,以及特殊值法,特殊位置法,特殊图形(数形结合)等方法,尽量的降低运算量和思维量,切忌“考场上的小题大做”,造成时间上和思维上的浪费;对于填空题,由于没有过程的要求,所以要求运算精简、准确、一步到位,公式定理使用得当熟练,思维严密,答案追求数值精准,全面。解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求“表达的准确、考虑的周密、书写的规范、语言的科学”,写清得分点,清楚地呈现自己的思维层次。否则会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;立体几何证明题中注意定理使用的条件要缺一不可,不能疏漏等等。解答题应注意“大题小做,大题细作”。
慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:“成在审题,败在审题”。快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。
计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。一句话:不是不会做,而是计算错!”
在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。事实上,解方程或方程组时将所求出来的解代入到原方程或方程组进行检验即可发现正确与否,解不等式或不等式组则可以考虑用解集区间端点或一些特殊值进行检验。
无谓失误2:答题不规范。
高考数学解答题明确要求考生写出文字说明、证明过程和演算步骤。考生们必须明白,做一道解答题实际是在写一篇数学作文!必须要把解答的思维过程无声地展示给评卷人员,而不是把一堆数学式子和数学符号写在试卷上即可。很多考生的文字说明词不达意,证明过程条件不明显、推理不到位、演算步骤详略不当、卷面不整洁。有些考生则是文字表述思路不清,令人费解,评卷老师需要猜测其解题意图。
千万不要触碰高考答题要求的“红线”:必须在指定答题区域内书写相应题号的解答。有些考生将部分解答内容写在指定的区域之外,甚至有一些考生更改答题卡的题号,如在18题答题区域上将“18”涂改成“19”并将19题解答写在这个区域上,这些都会被作零分处理。
“内紧外松”,集中注意,消除焦虑怯场。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
提高解选择题的速度、填空题的准确度。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关信息,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。
解题过程中卡在某一过渡环节上是常见的,这时可以先承认中间结论,往后推,看能否得到结论。若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
“以退求进”是一个重要的解题策略,对于一个较一般的问题,如果一时不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
认真审题。
审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是“新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。
审题要认真仔细。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
熟悉习题中所涉及的内容。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
正确的心态。
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
千万不要分心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
重视审题。
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
审题要慢,做题要快,下手要准。
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
保质保量拿下中下等题目。
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
要牢记分段得分的原则,规范答题。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
以上就是高考数学解题技巧,高中数学做题技巧的相关建议,希望能帮助到您!
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
立体几何篇。
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合。
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;。
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;。
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那。
么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分。
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
一、选择题——“不择手段”
题型特点。
(1)概念性强。
(2)量化突出。
(3)充满思辨性。
(4)形数兼备。
(5)解法多样化。
解题策略。
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
最适合高考学生的书,淘宝搜索《高考蝶变》。
二、填空题——“直扑结果”
题型特点。
填空题的考点少,目标集中。
解题策略。
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
对于高考数学基础比较薄弱的同学,重在保简易题。鉴于高考数学客观题部分主要是对基础知识点的考察,可以稍稍放慢速度,把时间控制在50-60分钟,力求做到准确细致,尽量保证70分的基础分不丢分。之后的三道简易高考数学解答题每题平均花10-15分钟完成。至于后三道高考数学大题,建议先阅读完题目,根据题意把可以联想到的常考知识点写出来,例如涉及函数单调性、切线斜率的可对函数求导,圆锥曲线的设出标准方程、数列里求出首项等等。如果没有其它的思路,不要耽误太多时间,把剩下的时间倒回去检查前面的题目。
高考数学题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。所以,在高考数学实际解题时,应特别注意,审题要认真、仔细。
对于高考数学题,第一重要的是数学知识点的掌握,第二是对答题技巧的掌握,考生在答高考数学题的时候,一定不要把所有时间都浪费在一道题上,否则会影响整张数学试卷的作答。
节约时间的关键是一次做对。
有些学生,好不容易遇到一个简单的高考数学题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的高考数学选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生看不上高考数学前边小题的分数,觉得后边大题的分数才“值钱”,这是严重的误区。
希望学生在高考数学考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。
高考数学解题技巧(优秀11篇)
文件夹