高中必修数学知识点归纳框架
文件夹
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
(1)棱柱:
(2)棱锥
(3)棱台:
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
信息技术应用借助信息技术探究指数函数的性质
2.2对数函数
阅读与思考对数的发明
探究也发现互为反函数的两个函数图象之间的关系
2.3幂函数
小结
复习参考题
阅读与思考集合中元素的个数
1.2函数及其表示
阅读与思考函数概念的发展历程
1.3函数的基本性质
信息技术应用用计算机绘制函数图象
实习作业
小结
第二章基本初等函数(ⅰ)
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
(2)画法
a、描点法:
b、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
对于映射f:a→b来说,则应满足:
(1)函数a中的每一个元素,在函数b中都有象,并且象是的;
(2)函数a中不同的元素,在函数b中对应的象可以是同一个;
(3)不要求函数b中的每一个元素在函数a中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈m),u=g(x)(x∈a),则y=f[g(x)]=f(x)(x∈a)称为f、g的复合函数。
【差数列的基本性质】
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
【等差数列前n项和公式s的基本性质】
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和s可以写成s=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nn)时,s-s=nd,=;当项数为(2n-1)(n)时,s-s=a,=.
⑶若数列{a}为等差数列,则s,s-s,s-s,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是s、t(n为奇数),则=.
⑸在等差数列{a}中,s=a,s=b(nm),则s=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为s.①若a0,公差d0,则当a≥0且a≤0时,s;②若a0,公差d0,则当a≤0且a≥0时,s最小.
【等比数列的基本性质】
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).
⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..
⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.
⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.
⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q1且a0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q0时,等比数列为摆动数列.
2025年高中必修二数学知识点归纳框架(五篇)
文件夹