高中数学必修数列教案
文件夹
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.
教学重难点
教学重点:熟练运用定理.
教学难点:应用正、余弦定理进行边角关系的相互转化.
教学过程
一、复习准备:
1. 写出正弦定理、余弦定理及推论等公式.
2. 讨论各公式所求解的三角形类型.
二、讲授新课:
1. 教学三角形的解的讨论:
① 出示例1:在△abc中,已知下列条件,解三角形.
分两组练习→ 讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况. (a为锐角时)
② 练习:在△abc中,已知下列条件,判断三角形的解的情况.
2. 教学正弦定理与余弦定理的活用:
① 出示例2:在△abc中,已知sina∶sinb∶sinc=6∶5∶4,求最大角的余弦.
分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角.
② 出示例3:在δabc中,已知a=7,b=10,c=6,判断三角形的类型.
分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断
③ 出示例4:已知△abc中,,试判断△abc的形状.
分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?
3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.
三、巩固练习:
3. 作业:教材p11 b组1、2题.
高中数学必修五数列教案篇二
教学准备
教学目标
数列求和的综合应用
教学重难点
数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和sn=n2-7n-8,
(1) 求{an}的通项公式
(2) 求{|an|}的前n项和tn
4.等差数列{an}的公差为 ,s100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为 的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn} 前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8. 在等差数列{an}中,a1=20,前n项和为sn,且s10= s15,求当n为何值时,sn有最大值,并求出它的最大值
. 已知数列{an},an∈n,sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0. 已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证 数列{an}是等差数列
(2设f(x)的图象的顶点到 x轴的距离构成数列{dn},求数列{dn}的前n项和 sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是 f(t)=
销售量 g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
高中数学必修五数列教案篇三
教学准备
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学过程等比数列性质请同学们类比得出.
2025年高中数学必修五数列教案(5篇)
文件夹