找次品第课时教学反思
文件夹
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的`先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
执教《找次品》一节课时,在导入环节,我用孩子们最常见的事物——“口香糖”引入课题,既与本课内容相关,又能提高孩子们的兴趣,从而引出“次品”。
在探索新知环节中,我让孩子从易到难,从3瓶口香糖中找出一瓶次品,然后为了让学生对所学知识产生浓厚的兴趣,我设置了一个环节:让电脑大屏滚动起来,最后停在哪个数字上,就从那个数字的口香糖中找出一瓶次品,最后电脑停在了19683瓶上,学生的兴趣陡然升高。此时老师告诉孩子们,像这种情况我们可以利用“化繁为简”的数学思想来解决类似问题,作为老师,不仅要对学生“授以鱼”,更要“授以渔”,让学生学会解决数学问题的方法。接着从6瓶、9瓶口香糖中找出一瓶次品,其中在从9瓶口香糖中找次品时,我设计了一个小组合作的活动,旨在让孩子自己在动手的过程中发现找次品的规律,发现规律后再从27瓶、81瓶、243瓶、729瓶、2187瓶、6561瓶、19683瓶口香糖中找次品,当学生发现从19683瓶口香糖中至少9次就能找出一瓶次品时,孩子们的情绪立即达到了高潮,也加深了对新知的理解。接着我设计的是让学生发现问题:当待测物品数不是3的倍数时又该如何找次品?引导学生得出当待测物品数平均分成3份后余一瓶或余两瓶时如何放就不影响我们用天平找次品,在这个环节的设计上,旨在让学生养成勤动脑、细观察的好习惯。最后,我设计的是让学生口述出找次品的最优化策略,目的在于培养孩子的总结表达能力。
在接下来的练习环节中,通过孩子们感兴趣的闯关模式,练习由易到难,让孩子们本节课所学的知识在练习中得到升华。
执教过这一节课后,感到存在的不足是:
1、学情把握不准,准备不充分。在小组合作时,学生对待测物品分份数时,不大胆,导致老师提示过于明显。
2、对教学时间把握不好。
“找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。
教学中我先让学生探究3个物品中如何寻找轻的一个,利用学会已有的知识经验,充分发挥学生的想像和思维能力,在体验了找次品方法的多样性后,以用天平称作为实践操作,第一次优化找次品的方法,使学生得出找次品用天平称最方便。
接着让学生利用不同的分法分别探究出4个物品和5个物品中找一个次品的方法,在学生实践操作和数字化的分析过程后,质疑利用天平称找次品时,一般要将物品分
成几分?两份还是三份?引出用较大数量来进行研究的必要性,并随机引导学生用数字化的方法去研究8个物品中的次品应如何找。当学生得出方法后,将学生的所有方法罗列在黑板上,利用观察让学生发现数据大时分两份的方法次数不是最少,第二次优化找次品的方法,是学生初步得出用天平称找次品时一般要分成三份,两份在天平上、一份在天平外。但同时有给学生制造一个悬念:同样分三份,有些称的次数少,有些却反而更多?激起学生进一步探究的欲望。
接下来以9个物品为例继续研究,第三次优化找次品的方法。在关注学生用数字化的形式来分析问题的同时,反馈出学生的解题方法,关注学生解题策略的多样化。
9(4、4、1)4(1、1、2)2(1、1)3次
9(3、3、3)3(1、1、1)2次
9(2、2、5)5(2、2、1)2(1、1)1次
9(1、1、7)7(1、1、5)5(1、1、3)2(1、1、1)4次
然后重点指导交流:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?从而得出平均分能够保证找出次品且称的次数最少这一结论。随机使学生产生不能平均份的数量应该怎样处理的问题,引导学生观察刚才8个物品找次品的方法,思考其中分三份的几个情况?从中发现“利用天平找次品,如果待测物品的数量不能平均分成3份时,我们要尽可能的使每一份的数量差不多,其中必须有两份要一样多,另一份的数量尽可能与之接近。”最终优化找次品问题的解题策略。
一、尽量体现教材意图。
《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。
二、尽量体现“数学味”。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。
三、尽量体现方法渗透。
本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。美国挑战者的视频画面距离学生的生活较远,孩子们兴趣不大。集体备课时大家建议这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。
按照例题,本课例1是从3瓶钙片中找到次品,而我却让孩子们先从2个玻璃球中找出次品,这样就降低了教学起点,孩子很容易的从2个、3个中找到次品。那么在后面的4个、8个、9个中找次品就容易多了,不会产生挫败感,增加成功的体验。
本课我让孩子们从2个、3个中找出次品这比较简单,然后加深到从4个、8个、9个中找次品,并且在8个、9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生运用规律探究更大的数,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:
想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题 ,探索解决问题的最优方法。
用语言描述找次品过程,当遇到使用天平次数较多时,叙述起来十分麻烦。在例1教学过程中,学生们更乐意用绘制简单天平示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但毕竟不方便。“繁”则思变,教材137页第5题用简单文字加箭头的方式清晰描述过程10个物品分成3份:3个、3个、4找次品。这种方式比画天平简洁得多,但有没有更简便的记录方式呢?《教参》中为我们介绍了一种树形图。这种树形图用小括号代替了“把物品分成几份,每份分别是几”的叙述,一目了然。同时还吸收了箭头示意图的优点,用两个分支表示称得的不同结果。但我觉得“天平两边各放3个”这类语言能否符号化,使图示更具有数学味,也更简洁。当天平两边各放3个平衡时,再将4个物
品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:
我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。
其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:
其二、当所分物品是偶数个(如4、6、8)时,我发现学生更亲睐于将其平均分成2份。这种分法在总数是4和6时,并不影响最少次数,但如果是8个物品时,如果平均分成2份,则至少需要3次,而如果分成3份(3、3、2),则只需要2次就可以找出次品。所以,要引导学生发现规律:应尽量将物品分成3份,能够更好找出次品“找次品”教学反思显得有些牵强。在练习中,有部分学生仍旧痴迷于平均分成2份的方法,在“做一做”中就有部分学生将10分成5和5,用这种分法同样也能做出正确结果,这时教师该怎样评价?
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”我这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。在本课的教学中有这样几点做得比较好:
教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从5个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了8个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了9个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。这过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。让学生经历探索数学知识的过程。围绕问题的解决,让学生经历探索数学的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受数学思想方法,提高他们的数学思维能力和解决问题的能力。
本节课的活动性和操作性比较强,沈佳老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把5个零件和8个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。
虽然本课从整体上来看还是比较成功的,达成了预设的教学目标,但是有些细节问题还是应该注意的。如:对于孩子们发言的点评还应该再有一些针对性;时间的控制再合理些,如在5个中找次品的时间再压缩一些为8和9再节省出一些时间会更好。让课堂时间分配更加合理。
“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
(一) 情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化, 降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3盒木糖醇中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进,符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展 ,巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在备课时我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。
(五)运用多种教学方法,提高效率
在教学过程中,充分的运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
找次品第一课时教学反思(8篇)
文件夹