每个人都应该定期做总结,以便更好地规划未来的方向和目标。掌握写作技巧、方法和结构是写一篇较为完美的文章所必需的。小编为大家整理了一些时间管理的APP和工具,希望可以帮助大家更好地管理时间。
教学目标:
达能力的提高。
情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。教学重点:理解倒数的意义和怎样求一个数的倒数。教学难点:正确理解倒数的意义及0为何没有倒数。
教学过程:
一、情境导入,引出问题。
1.风景倒影图。
2.游戏,按规律填空。
吞———吴呆———。
3/8———(/)10/7———(/)。
(1)学生观察填空,指名回答,并说出是怎么样想的。
(2)师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)。
3.学生观察板书的几组分数,看看每组中的两个数有什么特点?根据预习单小组交流后汇报。
教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)。
a:分子、分母相互调换位置的两个数叫做互为倒数。
b:乘积是1的两个数叫做互为倒数。
师生根据学生汇报归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。
二、合作探究、解决问题。
大家知道了什么是倒数,在看看倒数的意义,你发现哪些词我们要重点理解?
引导学生理解“两个数”“乘积是1”“互为”
教师重点指导“互为”,学生先说说自己的想法,师根据情况可以加入握手的游戏引导。
倒数是两个数的关系,这两个数是互相依存的,如果是一个数就不存在倒数的关系。
2.根据说法理解倒数。
(1)观察3/8与8/3,说说哪两个数互为倒数?还可以怎么样说?
(2)谁能说说10/7与7/10中谁和谁互为倒数?也可以怎么样说?
(3)学生练习说。
2.探究求倒数的方法。
学习例1:写出7/8、5/2的倒数。
教师根据预习单让学生说说自己找倒数的方法。总结出分子、分母交换位置可以找出一个数的倒数。
(2)师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?那么怎么样求整数、小数的倒数呢?选择一种,在小组内探究。
a:学生选择一种研究,教师巡视指导。
b:学生交流汇报,教师分别板书一例。
c:引导学生概括求倒数的方法。
(3)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×()=1,所以1的倒数是1。而0×()=1呢?
1的倒数是它本身,0没有倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.下面哪两个数是互为倒数。
4/3,7/6,8,6/7,3/4,1/8。
2.写出下面各数的倒数。
4/11,16/9,35,15/8,1/5。
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3.争当小法官,明察秋毫。
(1)1的倒数是1。(2)所有的数都有倒数。
(3)3/4是倒数。(4)a的倒数是1/a。
(5)因为0.5×2=1,所以0.5与2互为倒数。
(6)7/5的倒数是7/2。
(7)真分数的倒数都大于1。(8)假分数的倒数都小于1。
(9)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。
4.填空。
3/4×()=17×()=1。
2/5×()=()×4=5/4×()=0.5×()=1。
5.游戏:找朋友。
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验。
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
“倒数的认识”是在学生掌握了整数乘法、分数乘法的.意义和计算法则、分数乘法解决问题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,如意义的引入中,我在学生预习的基础上,安排学生交流互学,发现“两个数乘积是1”这一规律,让学生自己研究学习例子,给学生提供放手的思维空间,并尊重学生的自主性。在教学的设计中我还结合实际情况,借助语言学科与数学学科之间的联系为切入点,由文字的规律引发学生数学思维的火花;实现社会、语、数的整合。在教学中我们还有允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现,如“1”和“0”这两个特例,让学生独立思考,分组探讨,教师及时引导。得出1的倒数是1,而0没有倒数的结论。让学生从讨论中充分展示了自己的能力,调动学生的积极性,利于学生对问题的思考解决。我认为这样做不仅增添了课堂活力,提高了学生的注意力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功了快乐”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“填空,判断”、“连线”等题型,根据重点内容和关键点进行了多层次的练习,帮助学生巩固新知,活跃思维,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义,好像时时都是我引导学生在我思维的引导下,被动的学习知识。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新改变了教学理念,我觉得只有立足于学生的设计才是好的设计,只有学生自己通过观察、比较、归纳总结出倒数的意义,学生自己通过参与整个学习过程后才会有真正的收获。所以在今后的教学中,我们应该更好考虑学生学的情况。当然我的教学中还有很多不足之处,希望各位老师提出宝贵意见。
教学目标:
1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
教学重点:
会求一个数的倒数。
教学难点:
理解“倒数”是不能孤立存在的。
教学过程:
一、谈话导入。
真分数的倒数一定大于这个数。(或真分数的倒数一定大于1)。
假分数的倒数一定小于或等于这个数。(或假分数的倒数一定小于或等于1)。
二、揭示概念。
师:事实上,一个数也可以倒过来变成另一个数,比如3/4倒过来变成了4/3,1/7倒过来变成7/1。
师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)。
师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察思考,看你有什么发现。
组织学生交流自己的发现,引导学生总结几组算式的共同特点(乘积都是1),以及算式左边的两个乘数的关系(分子和分母互相颠倒),从而引出倒数的'概念。
师:你怎样描述上面算式中两个乘数的关系呢?(根据学生的回答,教师板书)。
乘积是1。
乘积是1。
2/3*3/2=1。
2*1/2=1。
8/11*11/8=1。
1/10*10=1。
7/9*9/7=1。
7*1/7=1。
6/5*5/6=1。
1/5*5=1。
分子和分母颠倒。
分子和分母颠倒。
师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(学生举例,教师板书:2/3和3/2互为倒数……)。
师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(学生举例,如互为朋友是指互相是朋友……。)。
三、试一试。
主要是让学生理解整数可以看作是分母为1的分数,1的倒数还是1。
四、想一想。
教师借助分数中分母不能为0,说明0没有倒数。
五、练一练。
学生独立完成p24。
六、归纳总结。
板书设计。
教学内容教科书第28~29页例1、“做一做”及相关内容。
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点理解倒数的意义;求一个数的倒数。
教学难点理解“互为倒数”的含义。
教学准备教学课件、写算式的卡片。
教学过程具体内容修订。
基本训练,强化巩固。
(3分钟)1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟)请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟)1.观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟)让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟)1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
:理解倒数的意义,学会求倒数的方法。
:发现倒数的一些特征。
课件
教学过程
特色设计
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢? 能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2 两个分数的倒数。
学生试做讨论后,教师将过程 。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识? 板书设计
这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。
教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。
练习中,通过“教、扶、放”使讲练有机结合,既加强了双基,又开发了智力。
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
:理解倒数的意义,求一个数的倒数。
:,从本质上理解倒数的意义。
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/75×1/50。25×4。
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×()=1()×9/7=1。
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)。
你是怎样想的?如0。5、1。7。
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。
2、会找了吗?你能找到下列数的倒数吗?
3/54/967/211。251。20学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)。
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。
先给自己提几个问题?
1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?
倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。
内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。
2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。
于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)教学例题例1(出示例题课件)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?
你认为哪些字或词比较重要?你是如何理解“互为”的?
教师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的`。
(二)教学例题2:
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
课件展示问题:
发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
(三)探讨带分数、小数的倒数的求法。
发现1:带分数的倒数都(小于)本身;。
发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。
三、练习巩固:
做一做练习六的题,学生汇报,集体订正。
四、全课总结。
今天学习了什么?我们一起回顾总结出来好吗?
五、课堂总评价。
对学生整节课的表现评价。
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:,从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/75×1/50。25×4。
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×()=1()×9/7=1。
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)。
你是怎样想的?如0。5、1。7。
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。
2、会找了吗?你能找到下列数的倒数吗?
3/54/967/211。251。20学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)。
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
《倒数》教学的想法和反思。
结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。
先给自己提几个问题?
1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?
倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。
内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。
2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。
于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。
文档为doc格式。
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
理解倒数的意义,会求一个数的倒数。
教学环节
教师活动
预设学生行为
设计意图
倒,你对这个字怎么理解?
那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?
出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.
具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。
学生说,就是把它倒过来,还做了个手势颠倒位置。
学生有可能会说,每组中都是一个是真分数一个是假分数。
学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。
设疑,让学生产生求知的欲望。
从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。
让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。
让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?
学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。
乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。
让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。
3/5的倒数是( ),
8的倒数是( ),
0.5的倒数是( )
1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。
2. 8可以写成8/1,所以8的倒数是1/8。
3. 0.5也可以写成1/2,所以0.5的倒数是2.
让学生归纳总结出找倒数的方法。
0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。
1的倒数是1 。
0没有倒数。因为0不能做为分数的分母。
加深对0没有倒数的理解;
加深对倒数知识的理解;
学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。
1.同桌互说倒数;
2.判断。
(1) 5/9是倒数,9/5也是倒数。( )
(2)0的倒数还是0.( )
(3)一个数的倒数一定比这个数小。( )。
3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )
学生会很活跃。
加深对0没有倒数的理解;
加深对倒数知识的理解;
开放题让学生的思维得到更深层次的拓展。
这节课你学会了什么?
与教师一起总结
培养学生的表达能力以及加深对倒数知识的理解。
板书设计
倒数的认识
倒数的意义:乘积是1的两个数叫做互为倒数。
求倒数的方法:1.分数——分子分母调换位置。
2.整数或小数——先化成分数,再调换分子分母的位置。
1的倒数是1, 0没有倒数。
学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。
1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的意义。
2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。
3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。
倒数的意义与求法。
[教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。
一、复习旧知,作好铺垫。
1、创设情景激趣。
师:请同学们仔细观察,(课件演示风景图片)。
师问:你发现图画上的景物有什么特点?
生:这些图画都倒过来了,出现了倒影。
师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)。
师:你们发现汉字的特点了吗?
生:这些汉字上下交换位置以后,都成了新的汉字。
师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?
板书:倒数。
二、合作探究,揭示倒数的意义。
1.学生交流自己写的乘积是1的两个数。
(估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:
师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)。
三、观察比较,探讨求倒数的方法。
探讨研究黑板上板书的几组数。
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置。
例:3/55∕33∕5的倒数是5∕3。
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置。
例:6=1∕66的倒数是1∕6.
看一看。例2中的那些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1=1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置。
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?