比喻是一种修辞手法,通过将事物与其它相似的事物进行对比来形成鲜明的形象。写总结要注重事实的描述,要以客观的态度审视自己的表现。这些总结范文中包含了对学习和工作等方面的总结和反思,其中有些还夹杂了一些个人的感悟和体会。
教学设想:
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
教学过程:
一、创设情景,明确目标。
(板书:圆的面积)。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。
本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。
第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。
1.经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积计算公式计算圆的面积。
3.在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。
圆形纸片、剪刀、多媒体课件等。
教学过程教师活动学生活动。
一、谈话引入,揭示课题。
二、探究新知。
1、第一次探究,明确思路,体会“转化”的数学思想方法。
2、第二次探究,明确方法,体验“极限思想”
3、第三次探究,深化思维,推导公式。
4、解决问题。
5、小结。
三、知识应用(出示一个圆)大家看,这是什么图形?
师:你已经掌握圆的哪些知识?
师:关于圆你还想探讨什么?
(板书课题:圆的面积。)。
师:谁能摸一摸这个圆片的面积。
师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。
在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。
师:噢,你想把圆转化成我们学过的三角形来求它的面积。
师:谁还有不同的方法?
师:这像我们学过的什么图形?
师:你想把圆转化成平行四边形来求它的面积,是不是?
师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。
师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。
师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。
师:为什么要折这么多份?
师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)。
师:你发现了什么?
师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。
师:能让拼成的图形更接近平行四边形吗?
师:哪个小组分的份数更多?
(教师让另一组展示自己平均分成16份后拼成的图形。)。
师:和前两次拼成的图形比,又有什么变化?
师:如果要让拼成的图形比它还接近平行四边形,怎么办?
师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)。
师:把这圆平均分了64份,看拼成新的图形呢?
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
通过观察操作,推导出圆面积公式及其应用。
极限思想的渗透与圆面积公式的推导过程。
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
出示图。
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:a、剪--怎样剪?剪成几份?b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。.。.。.会是什么情形?(课件演示)。
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导。
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程。
(3)教师板演圆面积的推导过程。
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)。
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
通过本节课的学习你有哪些收获?
圆的面积(教材16、17、18、页)。
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。
经历圆面积计算公式的推导过程,掌握圆面积的计算公式。
了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。
等分好的圆形纸片。
一、自主复习。
写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。
二、自主预习。
任意画一个圆,用彩笔涂出它的面积。
我知道:圆所占平面的()叫做圆的面积。
(三)估一估。
请你估计半径为5米的圆面积大约是多大?
先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。
三、小组交流自主预习部分。
四、自主探索圆面积公式。
1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)。
2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。
第一步:把圆平均分成8份,拼一拼,拼成了一个近似的()。
第二步:把圆平均分成16份,拼一拼,拼成了一个近似的()。
第三步:把圆平均分成32份,拼一拼,拼成了一个近似的()。
如果分的分数越(),拼成的图形就越接近于()。)比较剪拼前后的图形,发现()变了,()没变。
3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的(),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于()。如果用s表示圆的面积,圆的面积公式表示为:()。
4、公式的推导:
平行四边形面积=底×高。
1、还可以怎样拼接成长方形动手试一试并完成下面的填空。
把圆转化成长方形后,长方形的长相当于圆的(),宽相当于圆的()。因为长方形的面积等于(),所以圆的面积等于()。如果用s表示圆的面积,圆的面积公式表示为:()。
长方形的面积=长×宽。
圆面积=用字母表示圆面积公式:
五、小组交流。
六、全班交流教师总结。
七、学习检测。
1、填空。
求圆的面积必须知道()利用公式s=()来计算。
2、解决书16页上面喷水池转一周浇灌草坪面积?
3、计算,求圆的面积:(1)r=2cm(2)d=10cm。
4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?
八、交流展示。
九、回顾反思。
通过今天的学习,你学会了什么?还有那些疑惑?
本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习关于平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。
学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。
知识与技能:
1.理解圆的面积的概念。
2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。
经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。
感悟数学知识的内在联系,体验发现新知识的`快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。
教学难点:
理解圆的面积公式的推导过程。
圆片、课件。
一、本课是在学生学习了圆的认识的基础上进行教学的,力求实现变抽象为直观,化静为动,为学生提供丰富的感性材料,促进学生知识的迁移,帮助学生理解公式的推导过程,激发学生的学习兴趣,渗透数学中的转化思想。
教学导入时,我首先以当前的热点话题20xx奥运会切入主题,学生倍感亲切,紧紧抓住了学生的注意力,学生在教师的适时调控下由奥运会主会场鸟巢自然过渡到怎样求圆的面积呢?力求达到衔接自然的教学效果。
二、新授中首先让学生借助学具的操作,把圆形平均分成若干份,通过观察发现每份是近似的三角形,进而把圆分割成若干个三角形,借助三角形的面积公式推导出圆的面积公式,同时向学生渗透极限的思想,分的份数越多,每一份越接近三角形。之后教师引导学生利用分割后的三角形重新拼组成我们学过的长方形,依据它们之间的联系也能推导出圆的的面积公式。以上两种方法,一种是分割法,一种是拼组法,无论哪一种方法都渗透了转化的思想,引导学生找出新旧知识的衔接点,()温故而知新,力求达到有效突破教学难点的目的。
三、练习中首先让学生通过一组口头列式,及时巩固所学新知,力求使学生获得成功的喜悦!在此基础上,将导入时怎样求鸟巢的占地面积,补充上条件,让学生利用所学解决实际问题,首尾呼应,力求取得事半功倍的教学效果。最后给学生一个紧密联系实际的数学问题,求学校花坛的面积,激起学生的兴趣,学生在讨论中明确先测量出周长,然后求出半径,再计算花坛的面积,力求使学生在不断的尝试中逐步提高,升华新知!
文档为doc格式。
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1.充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2.要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标。
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点。
教学重点:圆的面积公式的推导及应用公式计算。
教学难点:探究圆的面积公式的推导过程。
教学目标。
1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆面积的计算公式计算圆的面积。
3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。
教学重难点及学具准备。
教学重点和难点:
教学准备:
圆形纸片、剪刀、多媒体课件等。
教学过程。
课前谈话:
聊一聊《曹冲称象》的故事。
(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)。
教学过程:
一、开门见山,揭示课题。
(出示一个圆)大家看,这是什么图形?
我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)。
(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)。
二、第一次探究,明确思路,体会“转化”的数学思想方法。
请你想一想,什么是圆的面积呢?
圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?
圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。
(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)。
怎样让扇形和三角形的面积接近一些?
把圆这个新图形转化成已经学过的图形求出面积。
(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)。
三、第二次探究,明确方法,体验“极限思想”
我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。
为什么要折这么多份?
把圆剪成更多份,能让拼成的图形更接近平行四边形。
(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)。
四、第三次探究,深化思维,推导公式。
(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。
第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)。
五、解决问题。
1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)。
(教师组织交流。)。
2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。
(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)。
六、小结。
2、学会11个生字,1个多音字,理解33个词语的意思。
3、能理解课文的思路,初步认识插叙的段落,懂得插叙的作用。
4、能辨清反问句,初步理解设问句的作用。
5、感受一个真正的共产党员钢铁般坚强的意志,体会今天幸福生活来之不易,不忘革命先烈的斗争业绩。
教学时间。
3课时。
第一课时。
教学要点。
初读课文,初步了解整篇课文的内容,学习生字和有关词语。
教学过程。
一、揭题,初读全文。
1、揭题,质疑,帮助设疑。
(1)江姐是谁?她是一个怎样的人?
(2)课文写了江姐的什么事?为什么写这些事?
2、自读课文,边读边想上述题(1),并用____划出文中有关江姐身份和品质的句子。
3、检查讨论第(1)题,并随机教学生字彭和词语白区,介绍有关《红岩》和有关的历史背景。
4、听录音,边听边想第(2)题,听后同组讨论交流答案。
5、检查。板书:痛失丈夫、熬受毒刑。
二、轻声朗读全文,读准生字字音,联系上下文理解词义。完成作业本1、3两题,再集体校对。
三、作业。
1、作业本第2题和第4题。2熟读课文。
第二课时。
教学要点。
细读课文,理解通过具体事例说明江姐高贵品质的表达方法。
教学过程。
一、复习检查。
1、检查作业本第4题。
2、说说课文主要写了江姐的哪几件事。
二、学习第一个事例:痛失丈夫。
1、轻声读2、6自然段,找出江姐说的话,齐读。板书:
这算得了什么!
2、联系上下文,默读思考:
(1)这指什么?
(2)是算不得什么吗:
学生朗读有关句子时,教师板书:打击、残酷、强忍悲愤、微微抖动、平静吐出。
(3)出示反问句:这算得了什么?与原句这算不得什么!比较,体会表达的不同感情。
3、消费者:江姐失去了丈夫,失去了她最亲的人,虽然内心痉万分,但她把个人的不幸和安危放在一边,以革命事业、党的利益为重。她,是我们党忠诚的战士!
三、学习第二个事例:熬受毒刑。
1、指名朗读7-8自然段,边听边思考:敌人是怎样折磨江姐的?江姐又是怎么忍受的?
2、指导用先然后最后的句式说说江姐熬受酽刑的经过说话提纲如下:
学生口述江姐受折磨经过时,教师板书:竹签钉指,没有呻吟。结合理解令人心悸。
3、分江姐和特务两条线有感情地朗读9-15自然段。先由师生对读,再让男女生对读。
5、多么顽强的战士啊!(引读第17自然段)当朝霞透过山峰,阳光洒满山谷地,高墙边的黑漆铁门一响,人们聚在风门口张望。只风______________。她熬受一夜的折磨,__________________。
6、严刑拷打,竹签穿指,十指连心哪!江姐是怎样忍受这撕心裂肺的痛楚的呢?
学生回答时教师板书:紧咬牙关、咬破嘴唇。
7、想象:江姐受刑时,紧咬牙关,她当时心里怎么想?
8、小结:是的,无论敌人用了怎样残酷的刑罚,我们的江姐宁死不屈。
四、作业。
抄写生字新词或课文段落。
敌人江姐。
先是疯不能。
然后冷笑倔强。
并又用竹昏。
泼凉水没有。
又泼凉水没有。
第三课时。
教学要点。
有感情地朗读课文,理清课文的层次,懂得插叙的作用,练习背诵难友们给江姐的信。
教学过程。
一、填空练习,创设情境,进入意境。
二、抓住两个具体事例,给课文分段,理清层次。
1、先抓住两个具体事例的起讫,把课文分为四段,并说说其他两段段意。
2、研究第7自然段的.承接过渡作用,不是那一夜发生的,是插叙。为什么要插叙呢?
三、学习文章下、四段,继续体会夜晚提审、关怀慰问两段对表达文章中心的作用。
2、指导朗读难友们的信,重点读好当我们当我们当我们排比句,抒发难友们对江姐的敬爱之情,以及江姐对他们的鼓舞。练习背诵。
4、齐语法第一段,指导读出反问句和设问句中难友们关心的语气。
四、感情朗读课文,作整理和总结。
1、通过本文的,你们学会了什么本领?
2、有感情地齐读全文。
五、作业。
1、背诵难友们的信。
2、听写词语。
3、把江姐的故事说给家人听,课外阅读《红岩》一书。
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
转化前后各部分间的对应关系。
一、导入新课:
提出问题:
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)。
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)。
生读,教师板书:圆的面积。
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)。
1、在推导的过程中你发现圆的什么变了?(板书:形状)。
2、在推导的过程中你发现圆的什么没变?(板书;面积)。
(二)、探讨第一问:
a:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
b:多媒体出示8等份圆。
2、学生汇报讨论结果。
3、媒体演示8等份。
c:多媒体出示32等份。
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
d:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
f:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想。
学生讨论。
(三)探讨第二问:
a:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)。
板书:长方形面积=长×宽。
b:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)。
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)。
c:推导出圆的面积并且用字母表示。(教师板书)。
d:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习。
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何。
解决此问题?
4、根据下面条件,求出各圆的面积。
c=6。28米r=1分米d=20毫米。
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸。
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结。
1、使学生熟练掌握圆的周长、面积的计算方法,能正确的计算圆的周长和面积。
2、使学生能综合运用所学的知识和技能解决有关的问题,增强应用意识。
3、能发现存在的问题,并加以改正。
应用圆的周长和面积的相关知识解决实际生活中的问题。
提问:解决这些问题需要用到和谁有关的知识?
2、这节课我们就对圆的有关知识进行整理和复习(板书课题)。
1.自主整理。
说一说本单元你学习了有关圆的哪些知识?
(1)学生可翻阅课本,并简要记录各节要点。
(2)小组内交流。
(3)整理知识点:
内容。
知识要点。
举例。
圆的认识。
圆的周长。
2.小组汇报。
学生分组汇报整理结果,汇报时其他学生认真听,完善补充。
(1)圆是平面上的()线图形。()决定圆的位置,()决定圆的大小。
(2)画圆时,圆规两脚间的距离就是圆的()。
(3)圆的半径扩大3倍,它的周长扩大()倍,面积扩大()倍。
(4)正方形的边长是2厘米,剪下一个最大圆的半径是()厘米,周长是()厘米,面积是()平方厘米。
学生说出判断的理由,进一步对基础知识进行巩固。
(1)79页的4题:明确场地的直径是8+1+1=10m。
(2)79页的9题:仔细观察图,明确四个扇形合在一起正好是一个半径1m的圆。
(3)79页的10题:
提问:操场跑一圈是多少?
让学生明确圆的周长加上正方形两条边的长度,就是操场的周长。
(1)圆的直径等于半径的2倍。()。
(2)半径2厘米的圆,它的周长和面积相等。()。
(3)一个圆的半径扩大4倍,它的面积扩大8倍。()。
(4)周长相等的长方形、正方形、圆中,圆的面积最大。()。
(5)半圆的面积就是圆面积的一半()。
(6)半圆的周长就是圆周长的一半()。
练习十七的1、2、3、5题。
小组内评价。
“圆的面积”说课设计教学重难点及教法说明说课内容是全日制小学数学课本第十二册“圆的面积”。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
本节课分四个环节来设计教学。
第一个环节:复习导入新课为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题“圆的面积”。
第二个环节:新授教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。
(一)公式的推导。
1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。
2.推导圆面积公式。
第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。
第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的'图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。
3.小结。
让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。
4.阶段性练习。
a.看标有半径的圆,求面积。
b.已知半径求面积。(练习时交待运算顺序。)。
(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。
第三个环节:巩固练习对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。
第四个环节:布置作业。(书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
一、引导估计,初步感知。
2、估计圆面积大小与半径的关系。
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究。
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
追问:课始我们的估算正确吗?
三、应用公式,解决问题。
1、基本训练,练练应用公式,求圆的面积。
2、解决问题。
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算。
(3)交流,突出5平方的计算。
四、巩固练习。
1、练习十九1求课始出示的光盘的面积。
五、这节课你有什么收获?你认为重点的。
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)。
六、课堂作业。
补充习题51页2、3、4题。
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
羽毛球器材。
二、指导思想。
本课以“健康第一”为指导思想;以新课程标准为基本理念;以面向全体学生为宗旨;以发展学生专长,培养终身体育意识为目的,结合实际,充分利用课程资源。通过介绍各种教学器材,让每个学生了解羽毛球知识,体验羽毛球运动带来的乐趣。
三、教材分析。
本课教学内容主要为羽毛球的器材。羽毛球器材:场地介绍、球和球拍。本科从教材的实际出发,使学生一步一步掌握羽毛球的场地长、宽、边线和端线,以及球的区分和球拍的选择。
四、教学目标。
1.初步学习羽毛球场地、器材基本知识。
2.通过了解羽毛球器材、场地知识,建立对羽毛球器材知识要求的正确概念。
五、本课教学重难点。
1.教学重点:场地的知识。
2.教学难点:球拍、球知识。
六、教学过程。
1.认识羽毛球场地。
(一)羽毛球标准场地尺寸。
一片标准的羽毛球场地,占地面积应不小于106.5㎡(长15米、宽7.1米),其中画线区域的主赛场标准尺寸为长13.40米,单打场地宽5.18米、双打场地宽6.10米。球场四周2米以内、上空9米以内不得有任何障碍物。场地线得颜色最好是白色、黄色或其他容易辨别得颜色。场地上得画线得宽度均为4厘米,所有场地线都是它所确定区域得组成部分。
(二)地面。
比赛场地一般采用pvc塑胶运动地板,pvc塑胶运动地板的弹性,滑涩程度适中。
(三)灯光。
比赛应在场地四周比较暗得环境中进行,因此,赛场上空得灯光至关重要。一般灯光得设计和布局有两种方法:一种是自炽灯泡,安装在每一球场得两侧网柱得上空;另一种是荧光灯,挂在与球场边线平行并且长度一样得地方。为避免自然光线得干扰,场馆内应挂上窗帘,场地上得照度要求达到500~750勒克斯。
(四)羽毛球网标准。
羽毛球网长6.10米、宽76厘米,为优质深色的天然或人造纤维制成,网孔大小在15-20毫米之间,网的上沿应缝有75宽的双层白布(对折而成),并用细钢丝绳或尼龙绳从夹层穿过,牢固地张挂在两网柱之间。标准球网应为黄褐色或草绿色。网柱高1.55米,无论是单打或双打,两根网柱都应分别立在双打场地边线的中点上。正式比赛时,球网中部上沿离地面必须为1.524米高,球网两端高为1.55米。球网的.两端必须与网柱系紧,它们之间不应该有缺缝。
(五)标准场地规格图。
2.认识羽毛球。
每个羽毛球规定要扎16根羽毛。最好的羽毛为鹅翎。羽毛长度要在60~70毫米之间.
3.认识羽毛球拍。
羽毛球拍一般由拍头、拍杆、拍柄及拍框与拍杆的接头构成。一支球拍的长度不超过68厘米,其中球拍柄与球拍杆长度不超过40厘米,拍框长度为28厘米,宽为23厘米,随着科学技术的发展,球拍的发展向着重量越来越轻、拍框越来越硬、拍杆弹性越来越好的方向发展。
七、小结。
本节课我只要是介绍羽毛球的场地、羽毛球和羽毛球拍知识,采用直观教学方法,以教师为主导,学生为主体,教师的“导”立足于学生的“学”。