职高数学知识点总结
文件夹
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。那么我们该如何写一篇较为完美的总结呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n
子集、交集、并集、补集、空集、全集等概念
1)子集:若对x∈a都有x∈b,则ab(或ab);
2)真子集:ab且存在x0∈b但x0a;记为ab(或,且)
3)交集:a∩b={x|x∈a且x∈b}
4)并集:a∪b={x|x∈a或x∈b}
5)补集:cua={x|xa但x∈u}
注意:a,若a≠?,则?a;
若且,则a=b(等集)
集合与元素
掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
子集的几个等价关系
①a∩b=aab;②a∪b=bab;③abcuacub;
④a∩cub=空集cuab;⑤cua∪b=iab。
交、并集运算的性质
①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;
③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;
有限子集的个数:
设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。
练习题:
已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},则m,n,p满足关系()
a)m=npb)mn=pc)mnpd)npm
分析一:从判断元素的共性与区别入手。
解答一:对于集合m:{x|x=,m∈z};对于集合n:{x|x=,n∈z}
对于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以mn=p,故选b。
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式δ来讨论位置关系。
①δ>0,直线和圆相交、②δ=0,直线和圆相切、③δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径r的大小加以比较。
①dr,直线和圆相离、
2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
集合的运算
运算类型交 集并 集补 集
定义域 r定义域 r
值域>0值域>0
在r上单调递增在r上单调递减
非奇非偶函数非奇非偶函数
函数图象都过定点(0,1)函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
二、对数函数
(一)对数
1.对数的概念:
一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式.
两个重要对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
指数式与对数式的互化
幂值 真数
= n = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:换底公式: ( ,且 ; ,且 ; ).
利用换底公式推导下面的结论:(1) ;(2) .
(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>10
定义域x>0定义域x>0
值域为r值域为r
在r上递增在r上递减
函数图象都过定点(1,0)函数图象都过定点(1,0)
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第四章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。
即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
5.函数的模型
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;2.元素的互异性;3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
2.集合的表示方法:列举法与描述法。
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设a={x|x2-1=0}b={-1,1}“元素相同”
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
①任何一个集合是它本身的子集。aía
②真子集:如果aíb,且a1b那就说集合a是集合b的真子集,记作ab(或ba)
③如果aíb,bíc,那么aíc
④如果aíb同时bía那么a=b
3.不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作a∩b(读作”a交b”),即a∩b={x|x∈a,且x∈b}.
2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集。记作:a∪b(读作”a并b”),即a∪b={x|x∈a,或x∈b}.
3、交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.
1、集合的概念
集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。集合是由它的元素确定的。
整体――集合不是研究某一单一对象的,它关注的`是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义
有限集和无限集是针对非空集合来说的。我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做φ。理解它时不妨思考一下“0与φ”及“φ与{φ}”的关系。
几个常用数集n、n_n+、z、q、r要记牢。
3、集合的表示方法
(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:
①元素不太多的有限集,如{0,1,8}
②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}
③呈现一定规律的无限集,如{1,2,3,…,n,…}
●注意a与{a}的区别
●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系
●注意区分“从属”关系与“包含”关系
“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用venn图描述集合之间的关系是基本要求。
●注意辨清φ与{φ}两种关系。
圆锥曲线性质:
一、圆锥曲线的定义
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.
3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.
二、圆锥曲线的方程
1.椭圆:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.双曲线:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
三、圆锥曲线的性质
1.椭圆:+ =1(a>b>0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=±
2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈r(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x
3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈r(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=-
1、映射
(1)映射:设a、b是两个集合,如果按照某种映射法则f,对于集合a中的任一个元素,在集合b中都有唯一的元素和它对应,则这样的对应(包括集合a、b以及a到b的对应法则f)叫做集合a到集合b的映射,记作f:a→b。
注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
2、函数
构成函数概念的三要素
①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
1求函数值域的方法
①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;
②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;
③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈r的分式;
④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);
⑤单调性法:利用函数的单调性求值域;
⑥图象法:二次函数必画草图求其值域;
⑦利用对号函数
⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数
1.定义:设y=f(x),x∈a,如果对于任意∈a,都有,则称y=f(x)为偶函数。
如果对于任意∈a,都有,则称y=f(x)为奇
函数。
2.性质:
①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,
②若函数f(x)的定义域关于原点对称,则f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域d1,d2,d1∩d2要关于原点对称]
3.奇偶性的判断
①看定义域是否关于原点对称②看f(x)与f(-x)的关系
1、函数单调性的定义:
2设是定义在m上的函数,若f(x)与g(x)的单调性相反,则在m上是减函数;若f(x)与g(x)的单调性相同,则在m上是增函数。
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高一数学必修1期末考知识点,希望你喜欢。
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集 n*或n+ 整数集z 有理数集q 实数集r
关于属于的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 aa ,相反,a不属于集合a 记作 a?a
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-32的解集是{x?r| x-32}或{x| x-32}
4、集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
1.包含关系子集
注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合.
反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a
2.相等关系(55,且55,则5=5)
实例:设 a={x|x2-1=0} b={-1,1} 元素相同
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
①
②真子集:如果ab,且a1 b那就说集合a是集合b的真子集,记作a b(或b a)
③如果 ab, bc ,那么 ac
④ 如果ab 同时 ba 那么a=b
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作ab(读作a交b),即ab={x|xa,且xb}.
2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:ab(读作a并b),即ab={x|xa,或xb}.
3、交集与并集的性质:aa = a, a=, ab = ba,aa = a,
a= a ,ab = ba.
4、全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即 ),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.
(3)性质:⑴cu(c ua)=a ⑵(c ua) ⑶(cua)a=u
1、“包含”关系—子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设a={x|x2—1=0}b={—1,1}“元素相同”
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
①任何一个集合是它本身的子集。aía
②真子集:如果aíb,且a1b那就说集合a是集合b的真子集,记作ab(或ba)
③如果aíb,bíc,那么aíc
④如果aíb同时bía那么a=b
3、不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和—2)时的函数图像。
当k>0时,反比例函数图像经过一,三象限,是减函数
当k<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
归纳3
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和—2)时的函数图像。
当k>0时,反比例函数图像经过一,三象限,是减函数
当k<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
幂函数的性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;
职高高一数学知识点总结(15篇)
文件夹