函数(模板14篇)
文件格式:DOCX
时间:2023-03-16 00:00:00    小编:Melissa职业规划

函数(模板14篇)

小编:Melissa职业规划

透过总结的镜头,我们可以发现很多自己之前没有注意到的细节和问题。如何在未来的职业选择中找到适合自己的道路呢?下面是一些优秀的语文范文,供大家参考。

函数篇一

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图。

(2)顶点、图象与坐标轴的交点。

(3)所形成的三角形以及四边形的面积。

(4)对称轴。

从上面的问题导入今天的课题二次函数中的图象与性质。

函数篇二

只在当前源文件中使用的函数应该说明为内部函数(static),内部函数应该在当前源文件中说明和定义,对于可在当前源文件以外使用的函数,应该在一个头文件中说明,要使用这些函数的源文件要包含这个头文件。

拓展阅读:

c++中。

面向过程。

静态全局变量。

静态全局变量在声明它的整个文件都是可见的,而在文件之外是不可见的;。

静态变量都在全局数据区分配内存,包括后面将要提到的静态局部变量。对于一个完整的程序,在内存中的分布情况如下图:

代码区//lowaddress全局数据区堆区栈区//highaddress。

staticintn;//定义静态全局变量。

改为。

intn;//定义全局变量。

程序照样正常运行。

的确,定义全局变量就可以实现变量在文件中的共享,但定义静态全局变量还有以下好处:

静态全局变量不能被其它文件所用;。

其它文件中可以定义相同名字的变量,不会发生冲突;。

注意:全局变量和全局静态变量的区别。

1)全局变量是不显式用static修饰的全局变量,全局变量默认是有外部链接性的,作用域是整个工程,在一个文件内定义的全局变量,在另一个文件中,通过extern全局变量名的声明,就可以使用全局变量。

2)全局静态变量是显式用static修饰的全局变量,作用域是声明此变量所在的文件,其他的文件即使用extern声明也不能使用。

静态局部变量。

在局部变量前,加上关键字static,该变量就被定义成为一个静态局部变量。

但随着程序退出函数体,系统就会收回栈内存,局部变量也相应失效。

但有时候我们需要在两次调用之间对变量的值进行保存。通常的想法是定义一个全局变量来实现。但这样一来,变量已经不再属于函数本身了,不再仅受函数的控制,给程序的维护带来不便。

静态局部变量正好可以解决这个问题。静态局部变量保存在全局数据区,而不是保存在栈中,每次的值保持到下一次调用,直到下次赋新值。

静态局部变量有以下特点:

该变量在全局数据区分配内存;。

静态局部变量一般在声明处初始化,如果没有显式初始化,会被程序自动初始化为0;。

静态函数。

在函数的返回类型前加上static关键字,函数即被定义为静态函数。静态函数与普通函数不同,它只能在声明它的文件当中可见,不能被其它文件使用。

静态函数不能被其它文件所用;。

其它文件中可以定义相同名字的函数,不会发生冲突;。

面向对象。

(类中的static关键字)。

静态数据成员。

在类内数据成员的声明前加上关键字static,该数据成员就是类内的静态数据成员。可以看出,静态数据成员有以下特点:

静态数据成员初始化与一般数据成员初始化不同。静态数据成员初始化的格式为:

函数篇三

学生能理解函数的概念,掌握常见的函数(sum,average,max,min等)。学生能够根据所学函数知识判别计算得到的数据的正确性。

学生能够使用函数(sum,average,max,min等)计算所给数据的和、平均值、最大最小值。学生通过自主探究学会新函数的使用。并且能够根据实际工作生活中的需求选择和正确使用函数,并能够对计算的数据结果合理利用。

学生自主学习意识得到提高,在任务的完成过程中体会到成功的喜悦,并在具体的任务中感受环境保护的重要性及艰巨性。

sum函数的插入和使用。

函数的格式、函数参数正确使用以及修改。

任务驱动,观察分析,通过实践掌握,发现问题,协作学习。

excel文件《2000年全国各省固体废弃物情况》、统计表格一张。

1、展示投影片,创设数据处理环境。

2、以环境污染中的固体废弃物数据为素材来进行教学。

3、展示《2000年全国各省固体废弃物情况》工作簿中的《固体废弃物数量状况》工作表,要求根据已学知识计算各省各类废弃物的总量。

函数名表示函数的计算关系。

=sum(起始单元格:结束单元格)。

4、问:求某一种废弃物的全国总量用公式法和自动求和哪个方便?

注意参数的正确性。

1、简单描述函数:函数是一些预定义了的计算关系,可将参数按特定的顺序或结构进行计算。

在公式中计算关系是我们自己定义的,而函数给我们提供了大量的已定义好的计算关系,我们只需要根据不同的处理目的去选择、提供参数去套用就可以了。

2、使用函数sum计算各废弃物的全国总计。(强调计算范围的正确性)。

3、通过介绍average函数学习函数的输入。

函数的输入与一般的公式没有什么不同,用户可以直接在“=”后键入函数及其参数。例如我们选定一个单元格后,直接键入“=average(d3:d13)”就可以在该单元格中创建一个统计函数,统计出该表格中比去年同期增长%的平均数。

(参数的格式要严格;符号要用英文符号,以避免出错。)。

有的同学开始瞪眼睛了,不大好用吧?

因为这种方法要求我们对函数的使用比较熟悉,如果我们对需要使用的函数名称、参数格式等不是非常有把握,则建议使用“插入函数”对话框来输入函数。

用相同任务演示操作过程。

4、引出max和min函数。

探索任务:利用提示应用max和min函数计算各废弃物的最大和最小值。

5、引出countif函数。

探索任务:利用countif函数按要求计算并体会函数的不同格式。

1、教师小结比较。

2、根据得到的数据引发出怎样的思考。

四、       。

1、废弃物数量大危害大,各个省都在想各种办法进行处理,把对环境的污染降到最低。

2、研究任务:运用表格数据,计算各省废弃物处理率的最大,最小值,以及废弃物处理率大于90%,小于70%的省份个数,并对应计算各省处理的废弃物量和剩余的废弃物量及全国总数。

1、分析存在问题,表扬练习完成比较好的同学,强调鼓励大家探究学习的精神。

2、把结果进行记录,上缴或在课后进行分析比较,写出一小论文。

1、让学生体会到固体废弃物数量的巨大。

2、处理真实数据引发学生兴趣。

通过比较得到两种方法的优劣。

学生的计算结果在现实中的运用,真正体现信息技术课是收集,分析数据,的工具。

通过类比学习,提高学生的自学能力和分析问题能力。

实际数据,引发思考。

学生应用课堂所学知识。

学生带着任务离开教室,课程之间整合,学生环境保护知识得到加强。

观看投影。

学生用公式法和自动求和两种方法计算各省废弃物总量。

回答可用自动求和。

动手操作。

计算各类废气物的全国各省平均。

练习。

练习。

用自己计算所得数据对现实进行分析。

应用所学知识。

练习并记录数据。

函数篇四

1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.

2.通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

教学重点和难点。

重点是理解指数函数的定义,把握图象和性质.

难点是认识底数对函数值影响的认识.

教学用具。

投影仪。

教学方法。

启发讨论研究式。

教学过程 。

一.   引入新课。

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:。

由学生回答:与之间的关系式,可以表示为.

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.

由学生回答:.

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.

1.定义:形如的函数称为指数函数.(板书)。

教师在给出定义之后再对定义作几点说明.

2.几点说明(板书)。

(1)关于对的规定:。

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.

若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且.

教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.

刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.

(1), (2),  (3)。

(4),  (5).

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象.

最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

3.归纳性质。

作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

函数。

1.定义域:。

2.值域:。

3.奇偶性:既不是奇函数也不是偶函数。

4.截距:在轴上没有,在轴上为1.

对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。

在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.

二.图象与性质(板书)。

1.图象的画法:性质指导下的列表描点法.

2.草图:。

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.

最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。

由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

3.性质.

(1)无论为何值,指数函数都有定义域为,值域为,都过点.

(2)时,在定义域内为增函数,时,为减函数.

(3)时,,    时,.

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

三.简单应用   (板书)。

1.利用指数函数单调性比大小. (板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

例1.比较下列各组数的大小。

(1)与; (2)与;   。

(3)与1.(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

解:在上是增函数,且。

(板书)。

教师最后再强调过程必须写清三句话:。

(1)构造函数并指明函数的单调区间及相应的单调性.

(2)自变量的大小比较.

(3)函数值的大小比较.

后两个题的过程略.要求学生仿照第(1)题叙述过程.

例2.比较下列各组数的大小。

(1)与; (2)与 ;  。

(3)与.(板书)。

先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)。

最后由学生说出1,1,.

解决后由教师小结比较大小的方法。

(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。

(2)搭桥比较法:用特殊的数1或0.

三.巩固练习。

练习:比较下列各组数的大小(板书)。

(1)与    (2)与; 。

(3)与;(4)与.解答过程略。

四.小结。

3.简单应用。

五.板书设计 。

函数篇五

即:一角的正弦大于另一个角的余弦。

2、若,则,。

3、的图象的对称中心为(),对称轴方程为。

4、的图象的对称中心为(),对称轴方程为。

5、及的图象的对称中心为()。

6、常用三角公式:。

有理公式:;。

降次公式:,;。

万能公式:,,(其中)。

7、辅助角公式:,其中。辅助角的位置由坐标决定,即角的终边过点。

8、时,。

9、。

其中为内切圆半径,为外接圆半径。

特别地:直角中,设c为斜边,则内切圆半径,外接圆半径。

10、的图象的图象(时,向左平移个单位,时,向右平移个单位)。

11、解题时,条件中若有出现,则可设,。

则。

12、等腰三角形中,若且,则。

13、若等边三角形的边长为,则其中线长为,面积为。

14、;。

函数篇六

不足之处:

教学机智。

再教设计。

在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。

函数篇七

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。

函数篇八

1.两个奇函数相加所得的和或相减所得的差为奇函数。

2.一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

4.一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

5.奇函数在对称区间上的积分为零。

二、奇函数性质。

2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。

3、定义域d关于原点对称是这个函数成为偶函数的必要不充分条件。

函数篇九

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的'情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1.复习在初中学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

五、学习过程:

函数篇十

xp函数的新增功能、常用函数和数据库的使用方法,以及excelxp的网络集成特性。

一、excelxp函数新增功能。

1.公式错误检查。

xp提供了公式错误检查功能。当单元格中的公式出现错误时,其左侧会出现智能标记按钮。单击该按钮可以打开一个智能标记菜单,其上端显示出错误的名称(如无效名称错误),能帮助用户迅速发现错误原因。

2.函数工具提示。

你只要单击其中的函数或参数名称,就可以打开帮助获得更多信息。

3.用自然语言搜索函数。

excel拥有数百个函数,寻找适用的函数是初级用户面临的难题。为此,excel。

xp在插入函数对话框中增加了搜索函数功能。假如你要完成数据排序任务,可以单击工具栏中的插入函数按钮打开对话框,在其中的搜索函数框内输入排序,然后单击转到按钮,对话框下面的选择函数框中显示rank等排序函数。

4.监视窗口。

xp增加了一个名为监视窗口的工具。其使用方法是:选中含有公式的待监视单元格,再用鼠标右键单击工具栏选择监视窗口。然后单击监视窗口中的添加监视按钮,被监视的公式及其计算结果就会显示在监视窗口中。

5.公式审核。

excel。

xp新增了一个公式审核工具栏,它提供了几个新的数据审查工具,例如错误检查、追踪引用单元格和公式求值。错误检查与语法检查程序类似,它用特定的规则检查公式中存在的问题,可以查找并发现常见错误,你可以在选项对话框的错误检查选项卡中启用或关闭这些规则。追踪引用单元格可以用蓝色箭头等标出公式引用的所有单元格,追踪结束后可以使用移去单元格追踪箭头按钮将标记去掉。公式求值可以打开一个对话框,用逐步执行方式查看公式计算顺序和结果,能够清楚了解复杂公式的计算过程。

函数篇十一

1.使学生了解反函数的概念,初步掌握求反函数的方法.

2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.

3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.

教学重点,难点。

重点是反函数概念的形成与认识.

难点是掌握求反函数的方法.

教学用具。

投影仪。

教学方法。

自主学习与启发结合法。

教学过程 。

一.揭示课题。

今天我们将学习函数中一个重要的概念----反函数.

(一)反函数的概念(板书)。

二.讲解新课。

教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)。

学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个(可画图辅助说明,当时,对应),不能构成函数,说明此函数没有反函数.

通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.

1.反函数的定义:(板书)(用投影仪打出反函数的定义)。

为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得,再判断它是个函数,最后改写为.给出定义后,再对概念作点深入研究.

2.对概念得理解(板书)。

教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)。

学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论:的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.

(1)“三定”(板书)。

最后教师进一步明确“反”实际体现为“三反”,“三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.

(2)“三反”(板书)。

此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.

(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)。

解:由得,所求反函数为.(板书)。

例2.求,的反函数.(板书)。

解:由得,又得,。

故所求反函数为.(板书)。

求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为,.

教师可先明知故问,与,有什么不同?让学生明确指出两个函数定义域分别是和,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.

在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.

解:由得,又得,。

又的值域是,。

(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)。

最后让学生一起概括求反函数的步骤.

3.求反函数的步骤(板书)。

(1)反解:。

(2)互换。

(3)改写:。

对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.

三.巩固练习。

练习:求下列函数的反函数.

(1)   (2).(由两名学生上黑板写)。

解答过程略.

教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)。

四.小结。

1.对反函数概念的认识:。

2.求反函数的基本步骤:。

五.作业 。

课本第68页习题2.4第1题中4,6,8,第2题.

六.板书设计 。

2.4反函数          例1.          练习.

1.定义。

2.对概念的理解    例2.

(1)三定(2)三反。

(1)反解(2)互换(3)改写。

函数篇十二

我是因变量。

有时,我是你的正比例函数。

你幸福,我快乐。

你忧伤,我也忧伤。

你失意时,给你架设胜利的桥梁。

你辉煌时,为你唱首美丽的赞歌。

条件:常数大于零。

有时,我是你的反比例函数。

寒冬腊月,我是你的小棉袄。

如火的酷夏,我当你的雪糕。

条件:常数大于零。

行于世间,身心疲乏。

因你的眼神而轻松。

因你的笑容而欢乐。

因你的问候而温暖。

函数的种类纷繁。

性质如云般万化。

亘古不变的:

我是因你而变化。

函数篇十三

1.使学生掌握的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.

2.通过对的概念图象性质的,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对的研究,让学生认识到的应用价值,激发学生的兴趣.使学生善于从现实生活中的发现问题,解决问题.

教材分析。

(1)是在学生系统了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

(2)本节的是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

教法建议。

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.

(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面对数函数中底数的认识,所以一定要真正了解它的由来.

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

1. 理解的定义,初步掌握的图象,性质及其简单应用.

2.通过的图象和性质的,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

3.通过对的研究,使学生能把握函数研究的基本方法,激发学生的兴趣.

和难点。

重点是理解的定义,把握图象和性质.

难点是认识底数对函数值影响的认识.

教学用具。

投影仪。

教学方法。

启发讨论研究式。

一.   引入新课。

我们前面了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.

1.6.(板书)。

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:。

由学生回答:与之间的关系式,可以表示为.

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.

由学生回答:.

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为.

一.   的概念(板书)。

1.定义:形如的函数称为.(板书)。

教师在给出定义之后再对定义作几点说明.

2.几点说明(板书)。

(1)关于对的规定:。

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.

若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且.

(2)关于的定义域(板书)。

教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.

(3)关于是否是的判断(板书)。

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.

(1), (2),  (3)。

(4),  (5).

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象.

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

3.归纳性质。

作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

函数。

1.定义域:。

2.值域:。

3.奇偶性:既不是奇函数也不是偶函数。

4.截距:在轴上没有,在轴上为1.

对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。

在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.

二.图象与性质(板书)。

1.图象的画法:性质指导下的列表描点法.

2.草图:。

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.

最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。

由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

3.性质.

(1)无论为何值,都有定义域为,值域为,都过点.

(2)时,在定义域内为增函数,时,为减函数.

(3)时,,    时,.

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

三.简单应用   (板书)。

1.利用单调性比大小. (板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

例1.比较下列各组数的大小。

(1)与; (2)与;   。

(3)与1.(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

解:在上是增函数,且。

(板书)。

教师最后再强调过程必须写清三句话:。

(1)构造函数并指明函数的单调区间及相应的单调性.

(2)自变量的大小比较.

(3)函数值的大小比较.

后两个题的过程略.要求学生仿照第(1)题叙述过程.

例2.比较下列各组数的大小。

(1)与; (2)与 ;  。

(3)与.(板书)。

先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。

最后由学生说出1,1,.

解决后由教师小结比较大小的方法。

(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。

(2)搭桥比较法:用特殊的数1或0.

三.巩固练习。

练习:比较下列各组数的大小(板书)。

(1)与    (2)与; 。

(3)与;(4)与.解答过程略。

四.小结。

1.的概念。

2.的图象和性质。

3.简单应用。

五.

有两个交点.

15天的合同可以签,而30天的合同不能签.

函数篇十四

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制