最新《几何原本》读后感400字(通用11篇)
通过写读后感可以体验到阅读的乐趣,促进自己的思考能力和文笔水平的提升。那么,如何写一篇较为完美的读后感呢?首先,要认真阅读并理解所读作品的主题、情节和作者传达的观点,对作品的整体感受要有一个清晰的认识。其次,应该结合自己的思考与感触,运用所学知识进行分析和解读,给出独到的见解和意见。同时,读后感要有结构合理、观点明确、语言流畅等特点,尽可能做到既有感情的表达又有理性的思考。以下是小编为大家收集的读后感范文,希望能给大家提供一些启发。
《几何原本》读后感400字篇一
几何学是一门集合数学、图形学、物理学和逻辑学于一体的学科,研究空间和形状的性质。在我的学习过程中,我体会到了几何学的重要性和魅力,并且逐渐发现了它与我们日常生活的联系。几何原本课程不仅丰富了我的知识储备,还培养了我的逻辑思维能力和创造力。
首先,几何学让我意识到数学的美妙之处。曾经,我对数学只是一堆公式和计算,但是通过学习几何学,我发现数学背后存在着无限的美丽和精巧。几何学通过图形的形状和结构来揭示数学的规律和性质,让我重新认识到数学的深度和广度。我开始意识到,数学不仅仅是为了解决实际问题,更是一种抽象思维的体现,是一门关于逻辑和推理的思维工具。
其次,几何学的学习给予了我良好的空间想象力和几何直觉。从一开始,几何学就要求我们以图形和空间为切入点,通过观察图形的形状、方向和位移来推断和证明结论。这让我培养了空间想象力和几何直觉的能力,能够更好地预测和理解空间问题。在日常生活中,无论是布置房间,还是规划路线,几何学都为我提供了一个解决问题的框架,使我能够更加高效和准确地完成任务。
此外,几何学的学习也让我更加懂得了证明的重要性和方法。在几何学中,证明是至关重要的一环。通过推导和逻辑推理,我们可以从已知事实出发,得出未知事实。这锻炼了我逻辑思维的能力,教会了我如何用证明说服他人,如何从多个角度分析和解决问题。这种证明的思维方式不仅适用于数学领域,还对其他领域的问题分析和解决有着普适性的指导作用。
最后,几何学的学习激发了我的创造力和想象力。几何学不仅仅是为了理解和应用已有的知识,更是为了创造新的知识和图形。通过解决几何难题和设计几何图形,我开始尝试用不同的思维方式探索和解决问题。这种创造性的思维过程让我思维更加开阔,想象力更加丰富。我开始认识到,数学并不是死的,它是一个等待我们去探索和发现的无限宇宙。
综上所述,几何学学习让我认识到数学的美妙之处、培养了空间想象力和几何直觉、加强了证明的能力和方法、以及激发了我的创造力和想象力。几何学是我认识数学和思维方式的媒介,它让我获得了远超于知识本身的宝贵财富。无论将来我走向何方,几何学的学习足够让我受益终生。
《几何原本》读后感400字篇二
几何原本是一本具有历史性和文化性的经典数学著作,它是欧几里得在约公元前300年编写的。作为数学基础中的重要部分,几何学对整个数学发展有着深远的影响。在我接触几何学的过程中,我深深感受到几何原本的教导对于我的帮助非常大,它不仅仅传授给我一个具体的知识点,更是教会了我一种思考方式,在这里,我的一些心得体会想分享给大家。
首先,几何原本的叙事方式很具有启示性。欧几里得通过引理和命题的结构,将论证过程分成了一步步推导的过程,使读者能够一步一步地理解。“得出结果”的方法,实在是一种非常好的解构过程,让我理解了对于问题要怎么定位、解决的过程。这就像我们去旅游一样,我们不能完全不做计划,如果我们先了解一些目的地,我们就能够更加明确如何出发,如何把每个目的地串联起来,如何安排行程。
其次,几何原本的另一个教导是它能够调动我的思维方式。欧几里得用一种较为宏观的角度去展示几何学的结论、证明和应用。这种维度的变化对我的思维方式开拓了新的角度,让我可以从不同的角度去看待事物。当我们碰到一个问题时,我们可以用不同维度的思维方式去思考,让我们更加深刻理解问题,更好地掌握解决方案。实际上,在思维方式上走得更远可能是超过学习的内容的,如果能够把思维方式的升级当成目标,那么会给自己的发展方向带来加分。
第三,几何原本给我的启示是在学习方法上,欧几里得的证明方法非常严谨。几何学为了表述准确,记号非常繁琐,我在学习几何学的过程中,也能够更加关注每个证明的细节。它教会了我思考的深度和规范,无论是在学习还是工作生活中,经常会碰到一些复杂的问题,我们需要一种规范化的方法去解决这些问题。我们需要有目标清晰的拆分工作,我们需要把工作内部的步骤明确,我们需要准确记录每一步的进度,这些都是欧几里得通过几何学教给我的非常宝贵的学习经验。
第四,几何原本还教会了我要有耐心的等待。几何学的证明通常需要经过一个漫长的推导过程,这个过程需要非常耐心的等待。这时候,我们需要放慢脚步,用相当的耐心去解决难题。在学习和工作中,我们也时常需要耗费大量时间去解决问题,这时候我们不要越挫越勇,着急思考,我们需要沉下心来,想一想,仔细思考,那么所有问题自然会迎刃而解。
最后,欧几里得在几何原本中展现了许多人文思想。这些思想不仅仅局限于数学领域,它还可以在我们生活的方方面面起到启示作用。例如,欧几里得在几何原本中强调了“数学是理性主义的一部分”,正是因为这一观点,我才知道在解决问题时,要用理性去思考,而不是一味的靠直觉。这像是我们生活中遇到一些复杂的问题也需要这样去解决。
总之,几何原本教给了我更多的是受益终身的技巧和心得,不仅仅局限于数学领域,而是可以指导和启示我在生活和工作中的方方面面。因此,我深信欧几里得的几何原本将是所有时代的人类经典的指导书,亦是一部闪耀着智慧光芒的人类瑰宝。
《几何原本》读后感400字篇三
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,数学家欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于数学家欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”,这些命题,我在读时,内心一直承受着几何外的.震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
《几何原本》读后感400字篇四
也许这算不上是个谜。稍具文化修养的人都会告诉你,欧几里德《几何原本》是明末传入的,它的译者是徐光启与利玛窦。但究竟何时传入,在中外科技史界却一直是一个悬案。
著名的科技史家李约瑟在《中国科学技术史》中指出:“有理由认为,欧几里德几何学大约在公元1275年通过阿拉伯人第一次传到中国,但没有多少学者对它感兴趣,即使有过一个译本,不久也就失传了。”这并非离奇之谈,元代一位老穆斯林技术人员曾为蒙古人服务,一位受过高等教育的叙利亚景教徒爱萨曾是翰林院学士和大臣。波斯天文学家札马鲁丁曾为忽必烈设计过《万年历》。欧几里德的几何学就是通过这方面的交往带到中国的。14世纪中期成书的《元秘书监志》卷七曾有记载:当时官方天文学家曾研究某些西方着作,其中包括兀忽烈的的《四季算法段数》15册,这部书于1273年收入皇家书库。“兀忽烈的”可能是“欧几里德”的另一种音译,“四擘”。
是阿拉伯语“原本”的音译。著名的数学史家严敦杰认为传播者是纳西尔·丁·土西,一位波斯著名的天文学家的。
有的外国学者认为欧几里德《几何原本》的任何一种阿拉伯译本都没有多于13册,因为一直到文艺复兴时才增辑了最后两册,因此对元代时就有15册的欧几里德的几何学之说似难首肯。
有的史家提出原文可能仍是阿拉伯文,而中国人只译出了书名。也有的认为演绎几何学知识在中国传播得这样迟缓,以后若干世纪都看不到这种影响,说明元代显然不存在有《几何原本》中译本的可能性。也有的学者提出假设:皇家天文台搞了一个译本,可能由于它与2000年的中国数学传统背道而驰而引不起广泛的兴趣的。
《几何原本》读后感400字篇五
只要上过初中的人都学过几何,可是不一定知道把几何介绍到中国来的是明朝的大科学家徐光启和来自意大利的传教士利玛窦,更不一定知道是徐光启把这门“测地学”创造性地意译为“几何”的。从1667年《几何原本》前六卷译完至今已有四百年,11月9日上海等地举行了形式多样的纪念活动。来自意大利、美国、加拿大、法国、日本、比利时、芬兰、荷兰、中国等9个国家及两岸四地的60余位中外学者聚会徐光启的安息之地——上海徐汇区,纪念徐光启暨《几何原本》翻译出版400周年。
“一物不知,儒者之耻。”
徐光启家世平凡,父亲是一个不成功的商人,破产后在上海务农,家境不佳。徐光启19岁时中秀才,过了16年才中举人,此后又7年才中进士。在参加翰林院选拔时列第四名,即被选为翰林院庶吉士,相当于是明帝国皇家学院的博士研究生。他殿试排名三甲五十二名,名次靠后,照理没有资格申请入翰林院。他的同科进士、也是他年满花甲的老师黄体仁主动让贤,把考翰林院的机会让给了他。
《明史·徐光启传》中开篇用33个字讲完他的科举经历,紧接着就说他“从西洋人利玛窦学天文、历算、火器,尽其术。遂遍习兵机、屯田、盐策、水利诸书”,可见如果没有跟随利玛窦学习西方科学,徐光启只是有明一代数以千万计的官僚中不出奇的一员。但是因为在1600年遇上了利玛窦,且在翰林院学习期间有机会从学于利玛窦,他得从一干庸众中脱颖而出。
利玛窦(matteoricci)1552年生于意大利马切拉塔,1571年在罗马成为耶稣会的见习修士,在教会里接受了神学、古典文学和自然科学的广泛训练,又在印度的果阿学会了绘制地图和制造各类科学仪器,尤其是天文仪器。
利玛窦于1577年5月离开罗马,于1583年2月来到中国。8月在广东肇庆建立“仙花寺”,开始传教。可是一开始很不顺利。为此,利玛窦转变了策略,决定采取曲线传教的方针,为了接近中国人,利玛窦不仅说中文,写汉字,而且生活也力求中国化。正式服装也改成了宽衣博带的儒生装束。
1598年6月利玛窦去北京见皇帝,未能见到,次年返回南京。在南京期间,利玛窦早已赫赫有名,尤其是他过目不忘、倒背如流的记忆术给人留下了深刻的印象,一传十,十传百,已神乎其神。加之利玛窦高明的社交手段,以及他的那些引人入胜的、代表着西方工艺水平的工艺品和科学仪器,引得高官显贵和名士文人都乐于和他交往。利玛窦则借此来达到自己的目的——推动传教活动。
也正是利玛窦的学识和魅力吸引了徐光启。根据利玛窦的日记记载,约在1597年7月到1600年5月之间。徐光启和利玛窦曾见过一面,利玛窦说这是一次短暂的见面。徐光启主要向利玛窦讨教一些基督教教义,双方并没有深谈。和利玛窦分手之后,徐光启花了两三年时间研究基督教义,思考自己的命运。1603年,徐光启再次去找利玛窦,但利玛窦这时已经离开南京到北京去了。徐光启拜见了留在南京的传教士罗如望,和之长谈数日后,终于受洗成为了基督教徒。
1601年1月,利玛窦再次晋京面圣,此次获得成功,利玛窦带来的见面礼是自鸣钟和钢琴,这两样东西是要经常修理的,于是他被要求留在京城,以便可以经常为皇帝修理这两样东西。正好1604年4月,徐光启中进士后要留在北京。两人的交往也多起来。在此之前,徐光启对中国传统数字已有较深入的了解,他跟利玛窦学习了西方科技后,向利玛窦请求合作翻译《几何原本》,以克服传统数学只言“法”而不言“义”的缺陷,认为“此书未译,则他书俱不可得论。”利玛窦劝他不要冲动,因为翻译实在太难,徐光启回答说:“一物不知,儒者之耻。”
《几何原本》读后感400字篇六
《几何原本》是古希腊数学家欧几里得的一部不朽之作,大约成书于公元前300年左右,是一部划时代的著作,是最早用公理法建立起演绎数学体系的典范。它从少数几个原始假定出发,通过严密的逻辑推理,得到一系列的命题,从而保证了结论的准确可靠。《几何原本》的原著有13卷,共包含有23个定义、5个公设、5个公理、286个命题。是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。
《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(theon,约比欧几里得晚七百年)编写的修订本为依据的。
《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。这里我们想到了关于英国哲学家t.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。
第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来。此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐。第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理。第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷。最后三卷,即第十一、十二和十三卷,论述立体几何。目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到。
《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系。所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题。《几何原本》成为了两千多年来运用公理化方法的一个绝好典范。
诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值。它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语。它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝。
《几何原本》读后感400字篇七
徐光启(公元1562—1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所著各种农书,附以自己的见解,编写了著名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学家。
他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811—1882年)完成的。
《几何原本》是我国最早第一部自拉丁文译来的数学著作。在翻译时绝无对照的词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本的、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
文档为doc格式。
《几何原本》读后感400字篇八
徐光启(公元1562—1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所著各种农书,附以自己的见解,编写了著名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学家。
他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811—1882年)完成。
《几何原本》是我国最早第一部自拉丁文译来的数学著作。在翻译时绝无对照的`词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
到清朝末年废科举、兴学堂之后,几何学方成为学校中必修科目之一。到这时才出现了徐光启所预料的“必人人而习之”的情况。
《几何原本》读后感400字篇九
摘要:徐光启翻译《几何原本》,使得西方科技知识传入中国,为我国培养了一批数学家,推动我国科技的发展,同时也成为明清实学兴起的重要思想,适应当时中国社会经世致用的治学需要。
《几何原本》作为13世纪古希腊的科学名着,将阿拉伯算学传入我国教育之中,对我国科学技术的发展发挥极大推动作用。在我国《几何原本》翻译传播过程中,常提到徐光启,徐光启不仅是我国杰出的科学家与翻译家,他在水利、天文等方面的表现也尤为突出,作出了杰出的历史贡献,对改善我国科技发展状况有很好的推进作用,以下本文就对此做具体介绍。
一、科学家徐光启。
徐光启是明嘉靖四十一年上海县法华汇人,出生在一个小商人家里,青年时徐光启聪敏好学,曾说出“文宜得气之先,造理之极,方足炳辉千古”,充分体现出他神童才子形象。到了二十岁徐光启考中秀才,就在家乡教书,他白天给学生上课,晚上钻研农业生产技术,他有保家卫国、提高国家科技力量之心,有诗记载“:沪上曾闻倭寇猖,心思报国卫家乡。西来教士传科学,北上生员识利郎。农政全书留百技,几何原本越重洋。翰林院里知危局,力主精兵备火枪。”[1]20后来,徐光启接触西方近代科学,便开始用尽一生去学习和探索西方近代科学,最终成为中国历史上第一位科学家。徐光启编译的西方近代科学着作《几何原本》中,把科学介绍给国人,开启我国士人接触西方科技的窗口,是文化的传播者,也是文化的实践者。在科技发展中,对于农业生产中需要研究天文历法,同时在水利工程中也离不开数学知识,故此,《几何原本》对我国科技发展起到一定的奠基作用,《几何原本》在我国教育中的推行,极大提升人们的觉悟,使人们可以用数学逻辑思想去解决问题,思考问题,促进科技的提升。
1.翻译《几何原本》的波折。徐光启是中国近代科学的先驱,他的科学技术成就中,最大的贡献就是翻译《几何原本》,《几何原本》全书共有十五卷,译出了前六卷。1606年,徐光启跟利玛窦说,想让他为自己传授西方科学知识,利玛窦用《几何原本》做教材,为徐光启讲授西方数学理论,后来徐光启经过一段时间的学习,不仅完全弄懂《几何原本》这部着作的内容,同时也为书中的基本理论与逻辑推理折服,意识到我国古代数学不足,故此下定决心翻译这部着作。
2.《几何原本》翻译的复杂性。1606年秋开始翻译《几何原本》,徐光启翻译《几何原本》中,由于该着作是用拉丁文写的,而拉丁文与中文语法不同,词汇也不一样,对于书里的数学专业名词中文中没有相应词汇,因此要把《几何原本》译得准确且通俗易懂,是不容易的事情[2]64.翻译《几何原本》中,先是由利玛窦用中文口头翻译,然后由徐光启草录下来,并在译完一段后由徐光启字斟句酌地推敲修改,最后让利玛窦对照原着核对。1607年利玛窦在向罗马的报告中写道“:现在只好用数学来笼络中国的人心。”足见利玛窦真正的心意了。已译出的前六卷是原书的拉丁文译文,至于克拉维斯的注解以及其他收集的欧几里得《原本》研究者的工作,几乎全部删去。虽然如此,《几何原本》的传入对中国数学界仍有一定的影响。
徐光启在《几何原本杂议》中对它评价很高,说:“此书为益,能令学理者祛其浮气,练其精心,学事者资其定法,发其巧思,故举世无一人不当学。”在徐光启翻译完《测量法义》章节之后,徐光启又接着写《测量异同》、《勾股义》两本书。在《测量异同》中,他比较中西方的测量方法,并用《几何原本》的定理解释中西方的测量方法和理论根据的一致性。《勾股义》是仿照《几何原本》方法,试图给中国古代的勾股算术加以严格的论述[3]131.它表明徐光启在一定程度上已经接受了《几何原本》的逻辑推理思想。徐光启对数学的认识和数学研究的方法都有独特的见解。他认为中国当时数学不发达的基本原因“,其一为名理之儒,土苴天下之实事;其一为妖妄之术,谬言数有神理,能知来藏往,靡所不效”.前者指当时一般学者名儒鄙视数学这一实用之学;后者指数学研究陷入神秘主义泥坑。他把讲究数学原理的《几何原本》看成是一切数学应用的基础。
徐光启翻译《几何原本》,振兴数学,指出明代数学落后的原因,提出“:度数旁通十事”的数学应用,预设公理、公设、定义,《几何原本》集演绎法大成,拥有逻辑严密、推理清晰的体系,讲求实用与计算技巧的提升“,能令学理者祛其浮气,练其精心,学事者资其定法,发其巧思”.
1.促使人们形成逻辑思维。徐光启是一个觉悟者,他认识到西方科学的重大价值,放下自己的传统思想专心翻译书籍,打破中国科学思想的压抑状态,使得科学在士人眼中有了新的位置,使人们可以通过西方科技思想去解决生活中遇到的问题,能够直观面对困难,相信科学[4]190.徐光启翻译《几何原本》,破除中国古代的“唯风土论”思想,并且还详细论述中国数学落后的原因,指出数学应用在社会实践中的广泛性,使人们能够运用逻辑推理去思考问题,简化实践中的难题。徐光启翻译《几何原本》,向国人普及科学,改变人的根本思想。徐光启指出,所有的问题都可以用科学来解决,更加有效、针对性更强。中国科技发展中,《几何原本》为改变中国科学面貌,将西方先进科学技术知识采用简单易懂的语言介绍给中国的学者,这在一定程度上影响中国数学、地理学、天文学的进步,变革中国科学研究方法,转变中国古代小农经济科学形态,趋向逻辑论证、数学分析科学特征,使人们对事物的描述更加严谨具体,不再是仅存于表象;同时也开始用实验为手段来论证事实,分条分析、严密严格论证问题,开对事物做出科学研究。注重逻辑体系中概念、符号的概括抽象,运用《几何原本》知识,演绎出逻辑严密的框架,这对于我国后世科技理论的形成发挥直接作用。
2.影响我国数学成果的提升。清代数学家梅文鼎、明安图、李善兰的一些成果都受益于《几何原本》,如李善兰的尖锥积分公式,基于多种几何模型的无穷级数建模,三角形的面积,对勾股定理的证明,勾股相求,勾股测望,平面形相容问题,理分中末线,平面几何图解法等,都用到《几何原本》中的主要思想[5]36.西方数学基础为欧几里得《几何原本》,徐光启翻译并出版《几何原本》,使中国数学知识的结构发生了重要变化,运用《几何原本》中的公式定理,把古代已有的数学方法更加严格化,创立出新的数学证明系统,通过《几何原本》将西方科学中国的三角学与测量术传入到中国,向中国介绍西方数学,不单单是数学方面的科技影响,更是思想方法的影响[6]27.徐光启翻译出版的《几何原本》中,有点、线、面、角、平行、相似等概念术语;徐光启将《几何原本》翻译得通畅简易,使人们更容易接受《几何原本》中的`科学知识,促进我国科技的提升。
3.影响数学教学。在数学教育中渗透公理化方法,以突破传统中国的“天人合一”整体思维方式,把社会中的道理分为物理、至理以及类似自然的科学,体现的是思维的逻辑性、严密性和表达方式的简洁性,抽象化表达内容,这对于培养学生在数学中的逻辑思维起到一定的积极作用,同时也有利于提升人们的素质教育。《几何原本》应用到数学教学中,也会产生一些负面影响,这就主要表现在数学教材方面,它不仅与实际问题脱节,还会导致教学中对抽象数学结论的不深刻,难以运用数学手段解决数学问题。因此,在数学教学中,可以通过《几何原本》的逻辑思维,将数学教学与逻辑思维相互结合,简化问题,提升解题认知能力。如在《几何原本》中提到的透视法,就是在绘画中可以运用数学理论,这将会影响中国的绘画艺术,起到一定的补充、完善作用,弥补传统数学中的不足。同时,《几何原本》中也传入我国一些三角学知识,主要包括平面三角学方面的知识,如明末《崇祯历书》中记载的《大测》、《测量全义》,为人们介绍西方三角学;同时在《测量全义》中,也介绍球面三角学;《测量全义》、《大测》、《割圆八线表》,还介绍三角函数表;故此,在数学教学中,能够正确把握教材,将《几何原本》发展史融入数学教学中,在抽象理论定性中,来加深理解,体现了数学模型方法在课程中的渗透,不仅可以充分反映出数学知识的演变过程,也可以准确把握数学中的辩证关系,取得良好的教育教学效果。
综上所述,在中西文化交流背景下,徐光启的《几何原本》翻译成功,使《几何原本》为中国传统数学提供了新的数学内容,改善传统数学教学思维模式,不仅使中国士人对于西方数学知识加深了解,同时,它所代表的逻辑推理方法以及科学实验,为我国近代科学的产生与发展提供重要线索,对我国科技发展也起到一定推进作用。
参考文献:
[1]宋芝业。徐、利译《几何原本》若干史实新证[j].山东社会科学,2010(4)。
[2]徐光启。徐光启文集[m].上海古籍出版社,1984.
[3]宋芝业,王雪源。为什么翻译《几何原本》---《几何原本》(前六卷)翻译过程中的中西比较[j].北京理工大学学报,2010(5),[4]李春勇。徐光启评传[m].中国思想家评传丛,2010.
[5]杨泽忠。利玛窦和徐光启翻译《几何原本》的过程[j].数学通报,2012(4)。
[6]纪志刚。汉译《几何原本》的版本整理与翻译研究[j].上海交通大学学报,2013(3)。
《几何原本》读后感400字篇十
《几何原本》是古希腊数学家欧几里得的一部不朽之作,大约成书于公元前3左右,是一部划时代的著作,是最早用公理法建立起演绎数学体系的典范。它从少数几个原始假定出发,通过严密的逻辑推理,得到一系列的命题,从而保证了结论的准确可靠。《几何原本》的原著有13卷,共包含有23个定义、5个公设、5个公理、286个命题。是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。
《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(theon,约比欧几里得晚七百年)编写的修订本为依据的。
《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。这里我们想到了关于英国哲学家t.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。
第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来。此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐。第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理。第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷。最后三卷,即第十一、十二和十三卷,论述立体几何。目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到。
《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系。所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题。《几何原本》成为了两千多年来运用公理化方法的一个绝好典范。
诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值。它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语。它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝。
《几何原本》读后感400字篇十一
徐光启(公元1562—1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所著各种农书,附以自己的见解,编写了著名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学家。
他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811—1882年)完成的。
《几何原本》是我国最早第一部自拉丁文译来的数学著作。在翻译时绝无对照的词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本的、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。