2025年高一上册数学知识点归纳总结(通用10篇)
总结是一个总体评价和概括的过程,通过它我们可以更好地总结和提炼出自己在学习和工作中的经验和教训。写一篇较为完美的总结,首先应该明确总结的目的和对象。以下是一些总结的实例,通过阅读可以更好地理解总结的写作方法。
高一上册数学知识点归纳总结篇一
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。
1、函数单调性的定义。
2、函数单调性的判断和证明:
(1)定义法。
(2)复合函数分析法。
(3)导数证明法。
(4)图象法。
1、函数的奇偶性和周期性的定义。
2、函数的奇偶性的判定和证明方法。
3、函数的周期性的判定方法。
1、函数图象的作法。
(1)描点法。
(2)图象变换法。
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
高一上册数学知识点归纳总结篇二
重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。例如:三视图、茎叶图、定积分、正态分布、统计案例等。
立足基础,强调通性通法,增大覆盖面。从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。
突出新课程理念,关注应用,倡导“学以致用”。新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。有意训练每年高考试题中都出现的高频考点。
高一上册数学知识点归纳总结篇三
1.学习的心态。
多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。
2.备考的方向。
什么是备考方向?所谓备考方向就是考试方向。在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。
题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。
3.训练的方式。
每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度:
(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获。
高一上册数学知识点归纳总结篇四
对此,高一的新同学,可以多向学长学姐请教,也可以多咨询老师,当然了,一切都只是引路人,最终还是要靠自己提高悟性,努力学习。
一名高中生,要有最科学的学习方法,才能事半功倍。比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑思考,愿意积极投入到数学学习中去。如果能够做到以下3点,高一的同学一定能够规避错误,提高数学成绩。
第1点:正确了解高中数学的特点。
高中数学与初中数学是完全不同的两个概念,最大的区别就是,高中数学更加抽象了。读过高中的同学都清楚,像集合、映射等概念,十分难以理解,而且离生活很远,不像小学和初中的数学那样“接地气”。还有,初中和高中的数学语言,也是有明显区别的。初中的数学,它是形象、通俗的。而高一数学,却变化了,它一下子就触及到了抽象的集合语言、逻辑运算语言、函数语言、空间立体几何等。对于刚刚升入高中的同学来说,显然很难以接受这种改变。那么,进入高中以后,同学们一定要注意到这种变化,要能接受并适应这种变化,如此,才能学好数学哦。
第2点:改变不好的学习习惯。
很多高一的学生,没有良好的学习习惯,比如,依靠心理很严重,不少同学,根本不愿意发散思维,他只凭借课堂上老师讲的内容,来完成练习题,殊不知,只会照猫画虎的话,根本不能深入到学习当中去。还有,一些同学进入高中了,却还把自己当成小学生,根本不愿意提前预习,或者参与到老师的提问当中,只愿意呆坐着等老师灌输,这样被动的学习,根本学不到真东西。
还有,一部分同学在进入高中后,思想上并没有做好准备,而是十分懒怠,觉得高一不用着急,高三时再用心苦读就可以了,其实呀,这种思想是完全错误的!高中阶段的数学这样难,只能一步一个脚印踏踏实实学,你丢弃了高一、高二的黄金时期,高三再苦读,也是赶不上去的!
第3点,要学会科学地分配学习时间,会用巧劲。
学习要得法才行,大部分学霸,是非常注重课堂听讲的,毕竟,老师们在上课之前,一定会提前备课,也会反复讲解本节课当中的重难点知识,此时,一定要积极跟着老师的思维走,不能想别的东西分散注意力,课堂上,老师所讲的概念呀法则呀公式呀定理呀,都是十分重要的,一定要吃透了,听进到头脑当中,切莫上课不听下课问,或者作业照抄了事,这都是对自己不负责任的表现!
还有,学习当中,一定要注重基础,数学是最重视基础知识的,由易到难,循序渐进,而且呢,学习当中,也不能只顾刷题,却不管算理。学习数学,要注意提升自己的深度和广度,一定要正确掌握数学分析方法,像是在学习函数值的求法,实根分布与参数变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等之时,高一学生一定要做好数学内容的衔接,还要及时地查漏补缺才行,切莫让知识点出现断痕!
高一上册数学知识点归纳总结篇五
一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。
解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。
高一上册数学知识点归纳总结篇六
(2)两个平面的位置关系:
两个平面平行—————没有公共点;两个平面相交—————有一条公共直线。
a、平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交。
二面角。
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直。
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
高一上册数学知识点归纳总结篇七
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量。
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。
考点四:数列与不等式。
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查。在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目。
考点五:立体几何与空间向量。
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何。
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明。
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”。考查的热点是流程图的识别与算法语言的阅读理解。算法与数列知识的网络交汇命题是考查的主流。复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大。推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问。
高一上册数学知识点归纳总结篇八
圆锥曲线性质:
一、圆锥曲线的定义。
1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.
2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.
3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.
二、圆锥曲线的方程。
1.椭圆:+=1(ab0)或+=1(ab0)(其中,a2=b2+c2)。
2.双曲线:-=1(a0,b0)或-=1(a0,b0)(其中,c2=a2+b2)。
3.抛物线:y2=±2px(p0),x2=±2py(p0)。
三、圆锥曲线的性质。
1.椭圆:+=1(ab0)。
高一上册数学知识点归纳总结篇九
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性。
定义。
一般地,对于函数f(x)。
(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高一上册数学知识点归纳总结篇十
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数。