高三数学课堂教学反思 高三数学老师教学反思(六篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高三数学课后的教学反思篇一
从学生到老师的转变我用了不到半年时间,也许是有点快了,所以看到那些学生仿佛就看到自己过去的影子,所以通过这些日子与学生的交流,发现自己并不能很快适应老师这个角色,自己仿佛是个大孩子,对同学板不下脸,威性不够,现在的孩子本生就是从父母的溺爱中成长起来的,所以越是脾气好的老师就越是不象话,这就是我这么些月来的最大感受。
年轻就得付出代价,所以对学生得反思对于年轻教师来说就更关键了,掌握好学生得心理,对学生管理得尺度掌握的好坏就影响着学生的成绩。
而且,现在的学生对于感兴趣的事物才会花更多心思,数学课本就乏味,所以如何让学生提起兴趣,这对于教学质量的好坏还是有很大的影响的,教学反思《初中数学教学反思》。
三、教学中要尊重学生已有的知识与经验。
教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。
学生不是简单被动地接受信息,而是对外部信息进行主动地选择、加工和处理,从而获得知识的意义。
学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验。
美国著名的教育心理学家奥苏伯尔有一段经典的论述"假如让我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的惟一最重要的因素就是学生已经知道了什么,要探明这一点,并应就此进行教学。
这段话道出了“学生原有的知识和经验是教学活动的起点”。
掌握了这个标准以后,我在教学中始终注意从学生已有的知识和经验出发,了解他们已知的,分析他们未知的,有针对性地设计教学目的、教学方法。
四、教学中注重学生的全面发展,科学的评价每一个学生。
新课程评价关注学生的全面发展,不仅仅关注学生的知识和技能的获得情况,更关注学生学习的过程、方法以及相应的情感态度和价值观等方面的发展。
只有这样,才能培养出适合时代发展需要的身心健康,有知识、有能力、有纪律的创新型人才。
高三数学课后的教学反思篇二
高三数学课型以复习课为主,大容量、大密度;如果老师不停的讲,学生被动地理解;到头来是老师讲得很多,很累,口干舌躁,学生却是听得很困,很烦,昏昏欲睡,这样的教学效果可想而知。不可否认,到了高三以后,复习的时间紧、任务重,老师急于把尽可能多的知识都传授给学生,但不能仅仅因为这个原因而一味的苦教,不顾及学生的感受;不顾及学生的理解程度;不顾及学生的学习实际。我觉得高三复习课仍然要备学生,仍然要讲究教法,仍然要充分调动学生用心参与课堂教学的主动性。针对我校学生普遍基础较差这一实际状况,更要贯彻“以学生为主体”的课堂教学理念,学生真正的动起来了,课堂效果也就会大幅度的提高。要让学生真正成为课堂教学的主动参与者,而不是旁观者。
到了高三复习阶段,每个学科选配一种复习资料是适应高三复习和适应高考的必然选取,如何用好复习资料,让它发挥最大的效益;如何处理好课本与复习资料的关系;这是高三复习课过程中首先要解决的一个基础性问题。我校学生进校时基础就比较差,务必以基础为主,以本为本。所以在第一轮复习时,要紧扣课本,以基础训练为主,查找知识上存在的漏洞和缺陷;然后针对学生作练习时暴露出的问题,再有目的选编练习题、例题进行精讲精练,从而消除学生知识上的盲点,对知识上的薄弱环节进行巩固和加深。对于复习资料上的资料,老师要进行合理的取舍,不能采用拿来主义。每复习完一章以后,再次透过单元检测、试卷讲评查漏补缺,并让学生详细阅读课本上的本章教学资料,以便使知识系统化,条理化,绝不能留下空白点。
高三复习过程中,最难把握的就是教学的难度问题。近年来,高考试题的难度逐渐趋于平稳,教学上如何应对我认为首先抓好“双基”不放松是前提和基础;其次,在牢固掌握知识的前提下,适当的持续一些难度是必要的,也是务必的。在上课时选取适当难度的例题或课余布置一些有难度的题目,会给学生必须的新鲜感和有利刺激,激发学生的学习兴趣和增强好胜感,从而有利于培养学生的个性品质。结合我校学生的实际状况,务必抓好基础,难度过高,过大的题目不要涉及太多。主要是要规范学生的解题步骤,培养学生的数学思维品质,高考说明对学生的个性品质的要求是:“要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。”可见,在平常复习时持续适当的难度是贴合考试说明的。
高三复习课离不开试卷讲评如何才能使试卷讲评起到它应有的效果呢长期以来,总是老师讲,学生听,结果是学生听的提不起精神,教师讲的津津有味,最后的效果还是不如人意。我认为我们就应大胆的放手,把试卷交给学生,让学生自己去研究,去探索,去思考,去讲解,教师只要做学生的指导者,点拨者就能够了。
以上几点是我的一点儿想法,期望能与同行共勉。
高三数学课后的教学反思篇三
本节课从实际问题出发,创设教学情境,有效调动学生学习的兴趣和积极性。学生通过实例计算,激发学生的探索精神,又通过大量的数学练习,使学生在计算中发现,在小组交流中体验,在教师的指导下自形归纳运算法则,亲身体验知识的形成过程,感悟数学的转化思想。本课体现了学生是学习的主体,教师是教学活动的组织者,指导者,参与者。本课改变了以往学生被动学习,被动接受知识的局面。但学生的认知水平毕竟存在差异,从学生的练习来看,大部分学生都掌握了有理数的运算法则,但还有些学生在将减法转化为加法时,总弄不清该减去哪个数的相反数,有的甚至把被减数也改变符号,特别是减去一个正数时,往往又再加上该正数,如误解— — = — + 。因此,教学还需要不断的探索,不断完善。
一、新课程理念更符合时代的要求,把课堂还给学生,让学生成为学习的主人。
二、教学要善于创设教学情境。有意义的学习能诱发学生的内在动机,引发学生的积极思维,培养学生良好的学习态度,因此为了使学习变成有意义的学习,首先学习材料必须是有意义的,也就是使学生感到所学习的数学知识对生活实际和数迷的发展都是有用的。
三、教学过程力求体现学生是学习的主体,教师只是教学活动的组织者,指导者,参与者,教师尽量引导学生思考,探索,相研究。学生通过在小组的合作交流的学习方式,大胆发表见解,从根本上改变学生被动学习的局面。在日常的教学中提倡自主学习、探究学习、合作交流等新颖的教学方式,学生的学习活动应当是一个生动活泼的主动的有个性的过程。
四。课堂教学评价具有促进学生发展和和教师专业成长的从重功能。
五、要致力于教学管理制度的重建。
总之,课程改革需要建立一种以师生个性全面交往为基础的新型师生情感关系,为此,需要教师全身心的真情投入,需要在完善教学活动和完善个性两个方面共同努力。
高三数学课后的教学反思篇四
思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。
思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基矗在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在一年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。
思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。
联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。
高三数学课后的教学反思篇五
首先是复习正比例函数的有关知识,目的是让学生回顾函数知识,为接下去学习反比例函数作好铺垫,其次给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数都是反比例函数,以及反比例函数的几种形式,自变量的取值范围。
又通过列表格的方法对反比例函数和正比例函数进行类比,巩固反比例函数知识。
通过做一做的三个练习进一步巩固新知,但到这里用时接近25分钟,时间分配上没有很好把握为接下去没有完成教学任务埋下伏笔。
接下去是要进行例1的教学,先进行的是杠杆定理的背景知识的介绍,在学生练习纸上让学生自己来独立完成三个问题,然后有学生回答,当进行到第二时,时间已经不够了,很仓促进行了小节。
这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。
综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!
经过这节课的教学,让自己收获不少,反思更多。
教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更加优秀。
高三数学课后的教学反思篇六
本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。
本节课我是这样设计引入的。
[师] y=3x2的图象有何特点?
[生]很快能说出函数图象以及相关的性质。
此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。
[师]y=3x2-6x+5的图象与y=3x2有何关系?
[生]猜想:向上平移5个单位,向左右平移6个单位。
[师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)
教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。
此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。
[生]可以先研究y=3(x-1)2的图象。
前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。
让学生完成课本p46的表格。
在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。
此处的设计是要让学生学会观察,从表格里发现函数图象的平移。
[生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。
[师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。
通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。
教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。
函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。