最新函数奇偶性说课稿件 函数奇偶性课教案
文件夹
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
1、教材
《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。
2、学生
五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力。但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。
1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;
3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。
主要是自主探究与开放式教学相结合。
1、让学生自主探索规律,并全程参与。
我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?!
2、大胆开放,抛弃束缚。
因此我打破了教材的局限,设计了一个崭新的思路——
(一)游戏导入,感受奇偶性
1、游戏一:6只小鸭子、5只蝴蝶找伴
2、游戏二:转轮盘
(1)讲要求:指针停在几上就再走几步;
(2)独白:
a请他们全班去吃饭,地方吗
b学生开心极了,当听到是东方饺子王………一片赞叹。
c结果:乘兴而来,败兴而归,有的指责我—骗人
(我—我怎么骗人了?)
讨论:为什么会出现这种情况呢?
如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、板书课题,加以破题,加以过渡。
(二)猜想验证,认识奇偶性
1、为什么没有人中奖呢?(学生猜想,教师板书)
2、真的是这样吗?(教师加以验证)
(我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力)
(而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我——————,哈哈不服气,你来呀!)
(三)大胆猜想,细心求证
1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?)
2、小组合作验证纠偏
3、小组展示(满满的一黑板,加减乘除都有。而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性。)
(四)坡度练习,层层加深
1、填空
2、判断(这些内容,由浅入深,由难及易,层层推进)
3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律。)
4、动手(有动脑的,动口的,这里的翻杯子就是动手了。)
1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的?
2、思考题
函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二。教学目标
1.知识目标:
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。
2.能力目标:
通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
3.情感目标:
通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。
三。教学重点和难点
四、教学方法
为了实现本节课的教学目标,在教法上我采取:
1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与
已知的距离,激发学生求知欲,()调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
五、学习方法
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
六。教学程序
(一)创设情景,揭示课题
f(x)= x2 f(x)=x
x
归纳:若点 在函数图象上,则相应的点 也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等。
(二)互动交流 研讨新知
函数的奇偶性定义:
1.偶函数
一般地,对于函数 的定义域内的任意一个 ,都有 ,那么 就叫做偶函数。(学生活动)依照偶函数的定义给出奇函数的定义。
2.奇函数
一般地,对于函数 的定义域的任意一个 ,都有 ,那么 就叫做奇函数。
注意:
1.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。
2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个 ,则 也一定是定义域内的一个自变量(即定义域关于原点对称)。
偶函数的图象关于 轴对称;奇函数的图象关于原点对称。
(三)质疑答辩,排难解惑,发展思维。
例1.判断下列函数是否是偶函数。
(1)
(2)
解:函数 不是偶函数,因为它的定义域关于原点不对称。
函数 也不是偶函数,因为它的定义域为 ,并不关于原点对称。
例2.判断下列函数的奇偶性
(1) (2) (3) (4)
解:(略)
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定 ;
③作出相应结论:
若 ;
若 .
例3.判断下列函数的奇偶性:
①
②
分析:先验证函数定义域的对称性,再考察 .
解:(1) 0且 = ,它具有对称性。因为 ,所以 是偶函数,不是奇函数。
(2)当 0时,-0,于是
当0时,-0,于是
综上可知,在r-∪r+上, 是奇函数。
教材p41思考题:
规律:偶函数的图象关于 轴对称;奇函数的图象关于原点对称。
例5.已知 是奇函数,在(0,+∞)上是增函数。
证明: 在(-∞,0)上也是增函数。
证明:(略)
小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。
(四)巩固深化,反馈矫正
(1)课本p42 练习1.2 p46 b组题的1.2.3
①
②
③
④
(五)归纳小结,整体认识
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
(六)设置问题,留下悬念
1.书面作业:课本p46习题a组1.3.9.10题
2.设 0时,
试问:当0时, 的表达式是什么?
了解奇偶性的含义,会判断函数的奇偶性。能证明一些简单函数的奇偶性。弄清函数图象对称性与函数奇偶性的关系。
一、复习引入
1、函数的单调性、最值
2、函数的奇偶性
(1)奇函数
(2)偶函数
(3)与图象对称性的关系
(4)说明(定义域的要求)
二、例题分析
例1、判断下列函数是否为偶函数或奇函数
例2、证明函数在r上是奇函数。
例3、试判断下列函数的.奇偶性
三、随堂练习
1、函数()
2、下列4个判断中,正确的是_______.
(2)是奇函数;
(3)是偶函数;
(4)是非奇非偶函数
一、教材分析 1.教材的地位和作用
内容选自人教版《高中课程标准试验教科书》a版必修1第一章第三节;函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。研究函数的奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究为后面学习幂函数,三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2.学情分析
已经学习了函数的单调性,对于研究函数性质的方法已经有了一定的了解。尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图像的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高。二.教学目标 知识与技能: 1.从数与形两个方面进行引导,使学生深刻理解函数奇偶性的概念。2.能利用定义判断函数的奇偶性。
过程与方法;通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
教法:借助多媒体以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式。
学法:根据自主性和差异性原则,以促进学生发展为出发点,着眼于知识的形成和发展,着眼于学生的学习体验。
过程分析
1.3.2 函数的奇偶性
一奇偶函数的定义二函数奇偶性的判断三奇偶函数的性质四例题讲解
最新函数奇偶性说课稿件 函数的奇偶性优质课教案(四篇)
文件夹