代数式的值说课(优秀8篇)
文件格式:DOCX
时间:2023-03-22 00:00:00    小编:向上遴选

代数式的值说课(优秀8篇)

小编:向上遴选

透过总结的镜头,我们可以发现很多自己之前没有注意到的细节和问题。可以结合举例和实际案例来加深总结的可信度和针对性。接下来是一些总结的典型样例,希望能给大家带来启发。

代数式的值说课篇一

在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:正确规范书写代数式和分析问题中的数量关系,列出代数式。

基于本节课的特点及初一学生形象思维为主的现状,我采用以下方法实现教学目标。以启发式教学为主,在抓好双基的情况下,采用分层指导的思想方法。通过生活情景引出课题,为体现代数式可以表示简单的数量关系,并可以解决生活中的问题,安排了三个例题和适当练习,在课堂最后安排探索规律来列代数式,体现自主探索,合作交流的过程,在达到教学目标的同时,让不同的人在数学上得到不同的发展。

遵循教为主导,学为主体,练为主线的教育思想,让学生积极参与教学,通过类比和初步的数学建模思想,在课堂中不断锻炼自己的思维,从而亲身经历知识的发生、发展、形成和应用的过程,并倡导合作交流的学习方法,养成积极主动的学习习惯。

在教学过程中,借助多媒体辅助教学,形象直观的体现教学内容,提高学习效率,调动学生的积极性,并在最后设置自我检测。

(一)、复习巩固:用字母表示数量关系

从学生上节课所学内容引入,符合学生的认知规律

(二)、由复习巩固中的代数式引入新课,引入代数式的概念;注意点;代数式的规范写法:

再通过做一做中问题的解决,说明了为什么要学习列代数式。在解决一些实际问题时,往往先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得更简洁,更具一般性。

再次通过巩固新课环节强调要正确写出代数式要注意点:

(1)审清题,弄懂一些术语

(2)抓住关键词,弄清运算顺序

(3)一般先读的先写

(4)用代数式表示应用问题时,还弄清题中的数量关系。

最后通过巩固提高环节说明:同时一个代数式可表示不同的意义。

代数式的值说课篇二

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;。

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;。

4.通过本节课的教学,使学生深刻体会从特殊到一般的.的数学思想方法。

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

代数式的值说课篇三

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

1用代数式表示乙数:(投影)。

(1)乙数比x大5;(x+5)。

(2)乙数比x的2倍小3;(2x-3)。

(3)乙数比x的倒数小7;(-7)。

(4)乙数比x大16%((1+16%)x)。

(应用引导的方法启发学生解答本题)。

二、讲授新课。

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。

解:设甲数为x,则乙数的代数式为。

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。

(本题应由学生口答,教师板书完成)。

最后,教师需指出:第4小题的答案也可写成x+16%x。

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积。

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。

解:设甲数为a,乙数为b,则。

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。

(本题应由学生口答,教师板书完成)。

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数。

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2。

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。

解:(1)m(m+6)个;(2)(m)m个。

三、课堂练习。

1设甲数为x,乙数为y,用代数式表示:(投影)。

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕。

四、师生共同小结。

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

五、作业。

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究。

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)。

代数式的值说课篇四

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法。

6.教学建议。

(2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

代数式的值说课篇五

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议。

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.。

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.。

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议。

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的.学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义。

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例。

代数式。

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

教学重点和难点。

重点:用字母表示数的意义?

难点:学会用字母表示数及正确地说出代数式所表示的数量关系?

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)。

(1)加法交换律a+b=b+a;

(2)乘法交换律a·b=b·a;

(3)加法结合律(a+b)+c=a+(b+c);

(4)乘法结合律(ab)c=a(bc);

(5)乘法分配律a(b+c)=ab+ac?

2、指出:

(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;。

代数式的值说课篇六

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

一、从学生原有的认识结构提出问题。

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

2?结合上述例题,提出如下几个问题:

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号?

例2根据下面a,b的值,求代数式a。

2

-的值?

(1)a=4,b=12,(2)a=1,b=1?

解:(1)当a=4,b=12时,

a

2

-=4。

2

-=16-3=13;

(2)当a=1,b=1时,

a

2

-=-=?

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

三、课堂练习。

1?(1)当x=2时,求代数式x。

2

-1的值;

(2)当x=,y=时,求代数式x(x-y)的值?

(1)(a+b)。

2

;(2)(a-b)。

2

答案:1.(1)3;(2);2.?(1);(2);3.。?

四、师生共同小结。

首先,请学生回答下面问题:

1?本节课了哪些内容?

3?在“代入”这一步应注意什么”

五、作业。

当a=2,b=1,c=3时,求下列代数式的值:

(1)c-(c-a)(c-b);(2)。

代数式的值说课篇七

今天我教授的是北师大版七年级第三章代数式第一课时今天感觉很成功的一节课环节来教授新课,先让学生表示出代数式,既是对上节课的复习又是对这节课的引入,然后,我通过学生书写的题目,引领学生总结代数式的共同特点,最后引出代数式的.定义。下来,我让学生判断几个式子是否是代数式?引起学生的认知冲突,教师从中纠正,让学生印象更深刻!

最后我出了一道题让学生做,包含三问结果学生的计算能力跟不上,逻辑思维能力也跟不上,最后一问,知道代数式的值,让学生去求其中一个字母,其实就是方程,可见学士的建模思想和逻辑思推理能力很差我得在这方面今后备课学要注意,要写功夫,另外学生读题的能力也不行半天读不懂题意,今后备课也得注意板书我今天也可以去要求自己,尽管效果不好,但比以前强!

感谢我的同事罗主任,宋老师,李老师,薛老师,谢谢你们的帮助!

代数式的值说课篇八

代数式作为数学中的一个重要知识点,从小学一直到高中几乎都贯穿着我们的学习,其中的概念和技巧也是非常丰富和复杂的。经过多年的学习,我对于代数式的实际操作和理论知识有了更加深入的理解和掌握,下面我将就代数式的心得体会作一番阐述。

代数式是由数字、字母和运算符号组成的式子,其中包括一元运算和二元运算,例如加减乘除、平方、开方等等。代数式在代数运算中占据了重要的地位,可以对各种数值关系进行抽象表达,是人们进行计算和研究数学问题的基础。在初中时,我对代数式的掌握还只是停留在表面,往往不知道代数式的本质和用途,只是简单地进行符号的替换和计算。但是,通过课堂学习和个人的实践,我逐渐认识到代数式的实际意义和应用场景,发现了它与解决实际问题之间的紧密联系。

代数式的运算规则包括整式加减乘除、分式加减乘除、乘法公式、因式分解等等,是代数运算的基本规则。在学习这些知识点的过程中,我深刻体会到代数式的变形与化简对于计算的重要性,掌握正规运算的方法不仅可以提高计算的准确性和速度,更能够让我们更好地理解代数式的结构和特性。例如,在解决一些代数问题时,我们常常需要运用代数式的乘法公式进行简化和化简,这样就可以避免过多的计算和冗长的式子,从而更快更准确地解决问题。

代数式的应用非常广泛,涉及到数学、物理、化学等各个领域,常常需要我们运用代数式来解决实际问题。例如,在物理学中,代数式可以用来描述物体的运动状态和相互作用,通过公式的推导和变形,我们可以更全面地了解物理规律和现象之间的本质关系;在化学中,代数式可以用来描述化学反应的化学式、化学计算和化学方程式等等,通过化学式的化简和转换,我们可以更好地掌握化学知识,从而更加熟练地应用化学理论进行实验和研究。

代数式作为数学中的一个基本概念和工具,具有非常重要的意义和价值。代数式不仅可以对各种关系进行抽象表达和分析,在理论研究和实际应用中发挥着不可替代的作用,更可以促进我们的大脑思考和逻辑推理能力的发展。通过代数式的学习和运用,我们可以不断提高数学知识的储备和计算技能,拓展自己的思维和想象力,更为重要的是,我们可以对各种复杂的问题进行深入的探究和解决,这是传统计算方法所无法做到的。

在学习和应用代数式的过程中,我们需要掌握一些实际的操作技巧,如多项式的展开、配方法、因式分解等等。这些方法可以使我们更快更准确地处理代数式,从而更好地理解代数式的本质和特性。在进行操作的过程中,我们需要注意运用技巧的合理性和操作的正确性,同时也需要多进行实践和应用,培养自己的计算和推理能力。

总之,代数式在数学学习中占据着十分重要的地位,我们需要通过长期的学习和掌握,逐步提高对代数式的理解和运用能力,培养自己的数学思维和推理能力,从而在实际应用中更好地发挥代数式的功效。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制