2024年数学七年级下册教学设计(大全14篇)
写总结是一种对自己的一种负责和尊重,也是对他人的一种交流和分享。写总结时,我们可以通过举例、比较和引用等手法,使文章更具说服力和可信度。总结范文中的内容丰富多样,可以满足不同需求和要求。
数学七年级下册教学设计篇一
让学生在感兴趣且较熟悉的生活问题中,复习条形统计图与折线统计图的特点。下面是小编收集整理的扇形统计图教学设计,欢迎阅读参考!
教学目标:
1、使学生结合实例认识扇形统计图,能联系对百分数意义的理解,对扇形统计图提供的信息进行简单的分析。
2、使学生能结合扇形统计图提供的信息,提出或解决简单的实际问题,初步体会扇形统计图描述数据的特点。
3、使学生体会扇形统计图在实际生活中的作用,感受数学与生活的密切联系,发展数学应用意识。
教学重难点:
体会扇形统计图描述数据的基本特点。
教学准备:
实物投影及挂图。
教学过程。
一、复习引新。
1、复习旧知。
提问:在简单的统计里我们学习过哪些知识?其中条形统计图和折线统计图各有什么特点?
2、引入新课。
出示一组事先收集的在报刊、杂志、网络等出现的扇形统计图,说明:这些也是一种统计图,叫做扇形统计图。
板书:扇形统计图。
二、教学新课。
1、出示p76的扇形统计图。
提问:
(1)图中的这个圆被分成了几部分?每一部分的图形是什么形状?
(2)这个圆表示什么面积?我国的国土面积按地形分,被分成了几类?
(3)从这个图中还能获得哪些信息?
教师揭示扇形统计图的含义,并强调扇形统计图中的圆表示的是总数量,圆中的各个扇形表示的是各部分与总量的关系。
说明:我国国土总面积有960万平方千米,可以算出各类地形的面积分别是多少。
学生用计算器算出各类地形的面积后,可启发学生把算出的各类地形面积相加,看结果是否等于960万平方千米,以达到检验的目的。
2、小结。
扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。
3、做“练一练”第1题。
提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算书上的前2个问题。指名口答结果。最后提问回答。
4、做“练一练”第2题。
提问:观察统计图,你能了解到哪些信息?在班级里交流。
三、巩固练习。
1、完成练习十五第1题:引导学生对两个统计图中的项目进行具体的比较,再交流。
2、练习十五第3题。
可利用中国地图先让学生说说我国这几个海域的大体位置,再让学生对照统计图说说体会。算出各海域的面积后,也可让学生通过求和以达到检验的目的。
四、小结。
通过今天的学习,你对扇形统计图有了哪些认识?
五、作业:
1、练习十五第2题。
2、小华家今年房租收入是2.5万元,占总收入的25%,工资收入、投资基金收入各是多少万元?(出示扇形统计图:工资收入占45%,投资基金收入占30%)。
数学七年级下册教学设计篇二
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】。
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】。
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点。
【教学重点】。
数轴的三要素,用数轴上的点表示有理数。
【教学难点】。
数形结合的思想方法。
三、教学过程。
(一)引入新课。
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知。
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习。
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业。
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
四、板书设计。
数学七年级下册教学设计篇三
教学目标:。
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
(一)创设情境,导入新课。
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究。
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高。
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()。
a.3b.-3c.-2.5d.-7.45。
【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华。
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):。
星期日一二三四五六。
(元)+16+5.0-1.2-2.1-0.9+10-2.6。
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈。
夯实基础。
1.填空题:。
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;。
(2)下午5时的水位比中午12时水位高多少?
提升能力。
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结。
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)。
数学七年级下册教学设计篇四
学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“生活中的立体图形”这节课中,不同的学生依据不同的生活背景进行活动,自己抽象出图形,制作出纸质的立体图形。彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。
二.从生活出发的教学让学生感受到学习的快乐。
在“代数式”这节课中,由上节课的一个习题引入,带领学生一起探究得出一个规律5n+2,由此引出代数式的概念。在举例时,老师指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位男孩举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如刘老师所说的,“代数式在生活中”。
三.学科的融合让学生感受到现代科技的魅力和综合式的学习。
在日常生活中,经常听人们议论ct技术、磁共振成像,但很少有人能将其中的道理讲清楚。然而,学习了七年级上册“截一个几何体”以后,几乎所有的学生都能体会现代医学的ct技术竟然和切萝卜类似。
四.创新设计让学生体现积极向上。
在学生上网查询,精心设计、指导下,成功地进行了“我是小小设计师”的课堂活动:这节课是以七年级数学上册的一题作业为课题内容设计的一节课,以正方形、圆、三角形、平行四边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。
五.合作探究给学生带来成功的愉悦。
“统计图的选择”教学设计和教学中,要求学生以4人小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,我针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。如教学“圆的认识”后,我有意识地带领学生到操场上画一个半径为5米的圆。有的学生想到两个人用一根长绳画圆,有的想到一排人转一圈画一个圆,也有的想到全班人围一个圈,沿这个圈画出一个圆。在此基础上,再让学生解决“为何现实生活中车轮都做成圆的,而车轴都装在圆心上?”、“当有人在表演时,观看的人群自然的围成一个圆,这是为什么?”“为什么羊吃到草的最大范围是一个圆形?”这些实际问题。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大。
数学七年级下册教学设计篇五
会进行单项式与单项式相乘的运算。
理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。
在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点
单项式与单项式相乘的运算法则及其运用
难点
灵活地进行单项式与单项式相乘的运算。
1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。
2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。
3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?
学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。
探究新知
1.怎样计算?你能说说每步计算的依据吗?
教师根据学生的回答板书:
(乘法交换律、结合律)
(同底数幂的乘法)
2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与单项式相乘,把它们的系数、同底数幂分别相乘.
通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。
例1.计算:
(1);
(2);
(3)(n是正整数).
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:
(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;
(2)有乘方时要先算乘方,再算乘法;
(3)单项式乘单项式,其结果仍是单项式;
(4)不要漏写只在一个单项式里含有的因式。
1.计算:
(1);
(2);
2.下面的计算对不对?如果不对,怎样改正?
3.计算(其中n是正整数):
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。
师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
p40第4、6题
数学七年级下册教学设计篇六
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
正确理解有理数的概念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的`概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练。
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业。
1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
数学七年级下册教学设计篇七
理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。
在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点
完全平方公式的比较和运用
难点
完全平方公式的结构特点和灵活运用。
一、复习导入
1. 说出完全平方公式的内容及作用。
2. 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?
学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。
教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。
我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。
二、新课讲解
温故知新
与 , 与 相等吗?为什么?
学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:
1.对原式进行运算,利用运算的结果来判断;
2.不对原式进行运算,只做适当变形后利用整体的方法来判断。
思考:与 , 与 相等吗?为什么?
利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。
总结归纳得到: ;
三、典例剖析
例1运用完全平方公式计算:
(1) ; (2)
鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。
例2计算:
(1) ; (2) .
例3 计算:
(1) ; (2)
训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。
四、课堂练习
1.运用完全平方公式计算:
(1) ; (2) ;
(3) ; (4)
2.计算:
(1) ;(2) .
3. 计算:
(1) ; (2)
学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。
五、小结
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
p50第2(3)、(4),3题
数学七年级下册教学设计篇八
3,体验分类是数学上的常用处理问题的方法。
正确理解有理数的概念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。
“统称”是指“合起来总的名称”的意思。
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。
创新探究。
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
(1)必做题:教科书第18页习题1、2第1题。
(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的.内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。
激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。
比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。
素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。
教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。
除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。
综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。
数学七年级下册教学设计篇九
初中阶段是学生情感意识建立的关键时期,而学生对于教师的良好感情则是课堂互动的基础。教师在教课过程中应该避免“填鸭式”的教学方式,因为这种教学方式很容易使学生增加对教师的依赖感,降低了他们的自主学习意识。在课堂上,教师应当加强与学生互动,适当地增加问题的提问。另外,教师在教学时应当结合实际,问题的设置要尽量贴近中学生的兴趣爱好,打破原来枯燥的说教方式。只有学生和教师之间建立起了良好的情感交流平台,学生才能对课堂感兴趣,才能在自主的学习过程中使自己的思维能力得到有效的锻炼。
(一)加强审题能力
审题是解题的第一个步骤,而细看当今中学生的答题试卷便可发现,因为审题出错的题目比比皆是,所以提高审题能力是解题的关键步骤。教师在日常的教学中应当注重培养学生认真审题的意识,如可以让学生在读题时用笔标出关键条件,也可以让学生小声朗读题目。这都有助于学生对于题目的理解。
(二)设置思维型问题,给学生留下想象空间
无论是课堂例题的设置还是课后练习题的设置,都需要教师动脑筋,教师要用贴近学生生活的题目去吸引学生,并使之从中得到练习,加强对知识的巩固。思维发散的题目对于学生各项思维能力的培养都是很有益的。且这类题目一般形式新颖,学生对于它们的印象比较深刻,从而有利于学生对此类知识的吸收。例如,现有含盐15%的盐水200克,含盐40%的盐水150克,另有足够的盐和水,要配置成含盐20%的盐水300克。
1.如果要求是使用现有的盐水,但尽可能地少使用盐和水,应该怎样设计配置方案?
2.你还有其他的配置方案吗?这一类的题目就是一种思维发散的题目,第一问更多地给予了学生独立思考的空间,能使他们利用自己的逻辑思维能力展开想象,并综合运用所学知识最终求得合理的配置方案。而第二问则在第一题的基础上进行了拓展,学生可以相互展开讨论,培养自己的求异意识。这样,在整个解题的过程中,学生的思维能力都得到了有效的锻炼。
(三)培养对错题的反思意识
对于错题的整理与反思是纠正错误、加深印象和提高成绩最有效的办法。而中学生的自主学习能力较弱,对于这方面的内容做得还不够好。因此,教师应当注重学生对错题反思能力的培养,对于学生的学习习惯做硬性的要求,使学生在不断地总结与反思的过程中去发散思维,得到新的启示。
学生可能经常会遇到这样的情况:如在做一道题时,反复思考都得不到答案,但是一经别人的提点或者一看答案解析,就立马想到了做法,实际上这还是因为学生对所学的知识掌握不牢固。因此,学生要培养错题反思、整理的意识,在了解标准答案的同时还要对自己不熟悉的知识进行着重的记忆,在造成解题障碍的环节上多下功夫。另外,学生在整理错题的过程中往往能收获新的解题方式,或者能对题目有更深的理解,这些都是思维锻炼的方式。
在数学的教学过程中,教师一方面应当将知识准确地传达给学生;另一方面,也应当注重学生对于学习方法方式的培养和思维能力的锻炼。数学的学习是一个有趣灵活的过程。在数学课堂中,学生的思维得到锻炼的可能性将更大。因此,教师一定要抓住初中生这一时期的特点,构建思维型和情感型课堂,使学生在学习的同时得到能力的提升,最终达到新课程改革的目标。
数学七年级下册教学设计篇十
教学目标:。
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
教学重点:深化对正负数概念的理解.
教学难点:正确理解和表示向指定方向变化的量.
(一)知识回顾和理解。
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考“0”在实际问题中有什么意义?
归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
如:水位不升不降时的水位变化,记作:0m.
(二)深化理解,解决问题。
[问题3]:(课本p3例题)。
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:。
美国减少6.4%,德国增长1.3%,。
法国减少2.4%,英国减少3.5%,。
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习。
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:。
中国减少866,印度增长72,。
韩国减少130,新西兰增长434,。
泰国减少3247,孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;。
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考。
(课本p6)用正数和负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
(三)应用迁移,巩固提高。
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.
3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:。
星期一二三四。
增减-5+7-3+4。
类比例题,要求学生注意书写格式,体会正负数的应用.
(四)课时小结(师生共同完成)。
数学七年级下册教学设计篇十一
1、知识与技能:
理解相交线、垂线的定义,在具体的情景中了解同位角、内错角和同旁内角的定义,能找到图形中的同位角、内错角和同旁内角以及对顶角。
2、过程与方法:
能够通过观察推断等方法准确找到图形中的邻补角、对顶角,能够进一步发展空间观念。
3、情感态度价值观:
培养识图能力,发展空间想象能力,和逻辑推理能力。
1、重点:邻补角、对顶角的概念,对顶角的性质与应用,以及对同位角、内错角和同旁内角的概念和应用的理解。
2、难点:理解对顶角相等的性质的探索。
1、创设情景:通过多媒体展示自然界中的相交线的图形,和同学们探讨自然界中还存在哪些相交线的图形,帮助同学们理解数学和生活的紧密关系。
3、抽象图形:抽象出具体的图形,和同学们一起给出相交线的定义。
5、尝试反馈:在和同学们的探讨中和同学们一起给出邻补角和对顶角的定义。
6、在相交线的模型中,如果两条相交线形成的四个角为直角,介绍垂线的定义。
7、进一步研究:在研究了一条直线与另一条直线之间的关系之后进一步研究一条直线与两条直线分别相交时,讨论没有公共顶点的两个角之间的关系,理解同位角、内错角和同旁内角的定义。
引导同学们一起进行总结本节课学习的内容,并强调对顶角的概念和性质的理解。
第七页,第二题,第六题,第十题。
数学七年级下册教学设计篇十二
2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)。
3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
深化对正负数概念的理解。
正确理解和表示向指定方向变化的量。
学生思考并讨论。
(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)。
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和—5℃,这里+7℃和—5℃就分别称为正数和负数。
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。
类似的例子很多,如:
水位上升—3m,实际表示什么意思呢?
收人增加—10%,实际表示什么意思呢?等等。
可视教学中的实际情况进行补充。
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少—2kg,但现在不必向学生提出。
巩固练习教科书第6页练习。
阅读思考。
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流。
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)。
本课作业1,必做题:教科书第7页习题1。1第3,6,7,8题。
2,选做题:教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2,“数0既不是正数,也不是负数。”(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。
数学七年级下册教学设计篇十三
会进行单项式与多项式相乘的运算。
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点
单项式与多项式相乘的运算法则及其运用
难点
灵活地运用单项式与多项式相乘的运算解决数学问题。
一、复习导入
2. 你能用字母表示乘法的分配律吗?
3. 类似的,对于单项式乘以多项式,比如
你能将它转化成已经学过的单项式乘单项式来计算吗?
二、新课讲解
探究新知
1.怎样计算 ?
学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:
教师指出,可以把单项式看成一个数,把多项式看成3个数的和。
2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:
(1) ;(2)
利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。
3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1. 计算:
(1) ; (2)
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
例2 求 的值,其中
提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?
引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂练习
基础练习:
1.计算:
(1) ; (2) ;
(3) ; (4)
2.先化简,再求值:
,其中
学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。
提高练习
3.已知 ,求代数式 的值。
4.已知 ,求 的值。
让学生自己分析,相互讨论,丰富解决数学问题的经验。
五、小结
师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
p41 第7题
数学七年级下册教学设计篇十四
掌握积的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点
积的乘方法则的运用。
难点
积的乘方法则的推导以及幂的混合运算。
一、复习导入
1.幂的乘方法则是什么?
2.如果一个正方体的棱长为,那么它的体积是多少?
如何计算呢?下面我们就来探索积的乘方的运算法则。
二、新课讲解
探究新知
1.思考:
前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?
学生讨论,师生共同写出解答过程:
2.发现:
从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。
通过思考、交流,得出:(n是正整数)
要求学生完成法则的语言叙述和推导过程。
用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。
推导过程:略
3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?
学生独立思考、互相交流,然后向全班汇报成果。
三、典例剖析
例1计算:
师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。
例2计算:
先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。
四、课堂练习
基础练习
1.计算:
2.下面的计算对不对?如果不对,应怎样改正?
3.计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。
提高训练:
3.计算:
五、小结
师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.p40第3题
2.计算: