2022年二次根式教学设计人教版(七篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
二次根式教学设计人教版篇一
知识与技能:
1、理解二次根式的概念。
过程与方法:
能运用二次根式的概念解决有关问题、情感态度与价值观:
经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
二、学情分析
学生已经学习了“整式”、“平方根”、“算术平方根”等知识,已经具备了学习二次根式的知识基础和心理基础,但学生刚认识二次根式,学习将有一定难度。学生知识障碍点是二次根式的概念及运算,如果学生在此不能很好地理解和正确的认知,将对今后学习产生很大影响,所以要求学生积极探究、思考,及时加以巩固,克服学习困难,真正“学会”。
三、重点难点
2、教学难点为:理解二次根式的双重非负性、四、教学过程
活动1【导入】活动一
问题1你能用带有根号的的式子填空吗?
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
活动2【活动】讲授
问题3你能用一个式子表示一个非负数的算术平方根吗?
追问:在二次根式的概念中,为什么要强调“a≥0”?
活动3【讲授】辨析概念
例1当x是怎样的实数时,√x2在实数范围内有意义?
例2当x是怎样的实数时,√x2在实数范围内有意义?√x3呢?
师生活动:先让学生独立思考,再追问.
问题4你能比较√a与0的大小吗?
小结:
1、二次根式的意义:√a(a≥0)
2、二次根式的性质:
性质1 √a2 = a(a≥0)
活动6【测试】目标检测
1、下列各式中,一定是二次根式的是()
a、√a b√3 、 c√x2+1 、 d、3√5
2、当x取什么时,二次根式√3x无意义.
3、当x取何值时,二次根式√x+3有最小值,其最小值是.
活动7【作业】布置作业
二次根式教学设计人教版篇二
2、掌握把二次根式化为最简二次根式的方法。
重点:化二次根式为最简二次根式的方法。
难点:最简二次根式概念的理解。
计算:
我们再看下面的问题:
简,得到
从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。
答:
1、被开方数的因数是整数或整式;
2、被开方数中不含能开得尽方的因数或因式。
满足上面两个条件的二次根式叫做最简二次根式。
例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?
解
(1)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。整数。
(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。
(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。
(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。
(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22。
指出:从(1),(2),(6)题可以看到如下两个结论。
2、在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。
例2 把下列各式化为最简二次根式:
分析:把被开方数分解因式或因数,再利用积的算术平方根的性质
例3 把下列各式化成最简二次根式:
分析:题(1)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。
题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。
通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。
答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。
如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。
a、2 b、3
c、1 d、0
3、把下列各式化成最简二次根式:
答案:
1、b
2、b
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。
2、把一个式子化为最简二次根式的方法是:
(2)如果被开方数含有分母,应去掉分母的根号。
1、把下列各式化成最简二次根式:
2、把下列各式化成最简二次根式:
二次根式教学设计人教版篇三
(2)会进行简单的二次根式的除法运算;
(3) 理解最简二次根式的概念
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
重点:二次根式的乘法法则与积的算术平方根的性质.
难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
4。1 第一学时
问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动 学生回答。
2.观察思考,理解法则
问题2 教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4 对例题的运算你有什么看法?是如何进行的?
师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。
问题2 教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4 对例题的运算你有什么看法?是如何进行的?
师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。
例1 计算: (1) ; (2) ; (3) 。
师生活动 学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。
问题6 课件展示一组二次根式的计算、化简题。
【设计意图】让学生用总结出的结论进行二次根式的运算。
例2 教材第9页例7。
再提问 章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
1.在 、 、 中,最简二次根式为 。
【设计意图】考查对最简二次根式的概念的理解。
2.化简下列各式为最简二次根式: ; 。
【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。
3.化简:(1) ; (2) 。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。
教科书第10页练习第1,2,3题;
教科书习题16。2第10,11题。
二次根式教学设计人教版篇四
二次根式这节课的重点是了解二次根式的定义,会判断一个根式是不是二次根式,难点是二次根式成立的条件,和利用进行计算。
通过课前备学生,我了解到,学生接受起来并不是太顺利,所以,这一节课我进行了两块的内容,一是二次根式的定义,理解它并会用定义进行判断;二是二次根式成立的条件,让学生掌握如何使二次根式有意义并会正确书写步骤。
通过上课,这两个目标达成就算不错了。
这节课是以前面学习的平方根与算术平方根为基础的,所以学习定义之前,先复习了平方根的定义,平方根的性质以及算术平方根的定义,并举例让学生理解,温故知新,通过复习,发现学生已经忘记了这些知识,所以复习很有必要。复习过后就学习了二次根式的定义,对于定义,我是这样处理的,定义的内容:形如的式子叫做二次根式,其中a叫做被开方数。
这是一个描述性定义,可以从以下几方面理解:
(1)从形式上看,二次根式必须含有根号“ ”。这里要举例说明。(2)被开方数a可以是数,也可以是代数式。如果是数,则必须是非负数;如果是代数式,则这个代数式的值必须是非负数,否则无意义。这里也要举例说明,举一些是二次根式的,举一些不是二次根式的,让学生进行判断。(3)式子既是二次根式,又是非负数a的算术平方要,所以它具有双重非负性:①被开方数a≥0,(这是使 有意义的条件);② ≥0,这是由算术平方根的意义所决定的。
(4)也是二次根式,它表示b与 相乘,如果b是带分数,则必须化成假分数。如 不能写成,而应该写成。
1、2、3。
接下来重点进行了确定二次根式中被开方数所含字母的取值范围这一知识点。
这里面要掌握一点,那就是若一个式子是二次根式,则它的被开方数一定是非负数,利用这一条件能确定二次根式中被开方数所含字母的取值范围。
特别的,含有分母的二次根式取值时易忽略分母不能为零这一条件。
由于取值范围的确定与不等式(组)有关,所以,在学习之前又进行了不等式的性质及解法进行了复习,因为前几天让学生复习过,且一直在温习,所以这一点学习并没有感觉到困难。
先进行了示范:当x为何值时,下列各式在实数范围内有意义?
其中重点说了后两个,就是取值范围确定时要保证分母不为零。步骤学习点拨186页例2,或参照课本124页例1.随后进行了练习,基础训练上的第4题,学生上黑板,效果不错。至于有关的计算,分解因式等内容,放在了下一课时,我觉得比较妥当,学生有了基础,才好理解。
这是这一节课的一点想法。
二次根式教学设计人教版篇五
1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)
2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)
问题1:你能用带有根号的式子填空吗?
问题2:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?
探究点一:二次根式的定义
下列各式中,哪些是二次根式,哪些不是二次根式?
(1);(2);(3);
(4);(5);(6)(x≤3);
(7)(x≥0);(8);(9);
(10)(ab≥0).
【类型一】 根据二次根式有意义求字母的取值范围
求使下列式子有意义的x的取值范围.
(1);(2);(3).
解:(1)由题意得4-3x>0,解得x<.当x<时,有意义;
(2)由题意得解得x≤3且x≠2.当x≤3且x≠2时,有意义;
(3)由题意得解得x≥-5且x≠0.当x≥-5且x≠0时,有意义.
方法总结:含二次根式的式子有意义的条件:
【类型二】 利用二次根式的非负性求解
(2)已知x、y都是实数,且y=++4,求yx的平方根.
探究点三:和二次根式有关的规律探究性问题
先观察下列等式,再回答下列问题.
①=1+-=1;
②=1+-=1;
③=1+-=1.
(1)请你根据上面三个等式提供的信息,写出的结果;
(2)请你按照上面各等式反映的规律,试写出用
含n的式子表示的等式(n为正整数).
解:(1)=1+-=1;
(2)=1+-=1(n为正整数).
1.二次根式的定义
一般地,我们把形如(a≥0)的式子叫做二次根式.
2.二次根式有意义的条件
被开方数(式)为非负数;有意义?a≥0.
《二次根式》教学反思
二次根式教学设计人教版篇六
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
4. 培养学生利用二次根式的除法公式进行化简与计算的能力;
6. 通过分母有理化的教学,渗透数学的简洁性。
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。
2.难点:二次根式的除法与商的算术平方根的关系及应用。
内容可引导学生自学,进行总结对比。
利用投影仪。
(一) 引入新课
学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根。
一般地,有 (a≥0,b0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
让学生讨论这个式子成立的条件是什么?a≥0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。
二次根式教学设计人教版篇七
知识与技能:
1、理解二次根式的概念。
过程与方法:
情感态度与价值观:
经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
学生已经学习了“整式”、“平方根”、“算术平方根”等知识,已经具备了学习二次根式的知识基础和心理基础,但学生刚认识二次根式,学习将有一定难度。学生知识障碍点是二次根式的概念及运算,如果学生在此不能很好地理解和正确的认知,将对今后学习产生很大影响,所以要求学生积极探究、思考,及时加以巩固,克服学习困难,真正“学会”。
2、教学难点为:理解二次根式的双重非负性、
活动1【导入】活动一
问题1你能用带有根号的的式子填空吗?
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
活动2【活动】讲授
问题3你能用一个式子表示一个非负数的算术平方根吗?
追问:在二次根式的概念中,为什么要强调“a≥0”?
活动3【讲授】辨析概念
例1当x是怎样的实数时,√x2在实数范围内有意义?
例2当x是怎样的实数时,√x2在实数范围内有意义?√x3呢?
师生活动:先让学生独立思考,再追问.
问题4你能比较√a与0的大小吗?
活动4【练习】练习
练习当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
活动5【活动】小结
小结:
1、二次根式的意义:√a(a≥0)
2、二次根式的性质:
性质1 √a2 = a(a≥0)
活动6【测试】目标检测
1、下列各式中,一定是二次根式的是()
a、√a b√3 、 c√x2+1 、 d、3√5
2、当x取什么时,二次根式√3x无意义.
3、当x取何值时,二次根式√x+3有最小值,其最小值是.
活动7【作业】布置作业
教科书习题16、1第1,3,5,7,10题.