小学数学概念教学设计 小学数学概念教学设计案例(五篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学概念教学设计 小学数学概念教学设计案例篇一
蹇家坡学校
杨胜
毕业两年,每学期都带两个班的数学课,一直以来,我就觉得数学有几大难题,其中就有对于概念的教学,像老师所提到了现象,在教学时,学生对于概念好像识记了,掌握了,甚至会背了,可是到需要运用这些概念时,学生往往不知所措,完全不会运用。
而数学概念是数学思维的细胞,是形成数学知识体系的基本要素,是数学基础知识的核心,是孩子们学习数学的坚固基石。对于小学的孩子来说,正确地理解、掌握数学概念更是孩子学好数学的前提和保障,有利于学生在后来的学习中形成完整的、清晰的、系统的数学知识体系。
下面我就以我所了解的我们班的情况浅谈几点:
第一、存在问题
1、学生方面:对于小学的孩子来说,其抽象思维能力较弱,对于数学语言的理解和表达有一定的难度,从而使学生出现死记硬背牢记了数学概念,确完全不知该如何应用。
2、教师方面:由于我刚刚毕业,本身对于小学数学概念就没有一个系统的、清晰的认识,只是跟着教材、教参走,结果在某些问题上自己也拿捏不准,自然会使得孩子们数学概念越来越不确定,越来越糊涂。
3、教学设备方面:由于学校处于偏远地区,教学资源特别薄弱,并缺少教学最需要的多媒体,也没有什么教具给我们老师提供,同时由于课堂教学在空间、时间上的限制,使得概念教学显得枯燥、乏味,教学也往往只浮于表面。
4、来自概念本身的:数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映,具有抽象概括性;数学概念又是以语言和符号为中介的,这和我们对生活的理解是不同的,造成了生活概念和数学概念的混淆。比如大部分孩子对于“角”就仅停留在角的顶点上,并需要依托具体的实物才能进行描述,而数学中的“角”则是“角是有公共端点的两条射线所组成的几何图形”,这对于孩子们来说是费劲的。
第二、解决方法
怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。
1、概念的引入讲述宜直观形象
针对小学孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。
2、概念的练习宜生动有趣
小学孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。
游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。
四、概念的拓展宜实在有效
美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。
孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。
概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。
我也只是一个刚刚踏上教师岗位的教师,对于班级管理存在的问题,对于教学当中存在的问题,太多太多了,希望各位老师能多多指教,在下一定虚心请教。
2014年10月14日
小学数学概念教学设计 小学数学概念教学设计案例篇二
小学数学概念教学 陈官屯小学 韩美霞
一、什么是数学概念
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。
小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。这些概念是构成小学数学基础知识的重要内容,它们是互相联系着的。如只有明确牢固地掌握数的概念,才能理解运算概念,而运算概念的掌握,又能促进数的整除性概念的形成。
二、小学数学概念的表现形式
在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。
1.定义式
定义式是用简明而完整的语言揭示概念的内涵或外延的方法,具体的做法是用原有的概念说明要定义的新概念。这些定义式的概念抓住了一类事物的本质特征,揭示的是一类事物的本质属性。这样的概念,是在对大量的探究材料的分析、综合、比较、分类中,使之从直观到表象、继而上升为理性的认识。如“有两条边相等的三角形叫等腰三角形”;“含有未知数的等式叫方程”等等。这样定义的概念,条件和结论十分明显,便于学生一下子抓住数学概念的本质。
2.描述式
用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5„„叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。
一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。
另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。
一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会教材的这两个特点。
三、小学数学概念教学的意义
首先,数学概念是数学基础知识的重要组成部分。
小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。例如,整数百以内的笔算加法法则为:“相同数位对齐,从个位加起,个位满十,就向十位进一。”要使学生理解掌握这个法则,必须事先使他们弄清“数位”、“个位”、“十位”、“个位满十”等的意义,如果对这些概念理解不清,就无法学习这一法则。又如,圆的面积公式s=πr2,要以“圆”、“半径”、“平方”、“圆周率”等概念为基础。总之小学数学中的一些概念对于今后的学习而言,都是一些基本的、基础的知识。小学数学是一门概念性很强的学科,也就是说,任何一部分内容的教学,都离不开概念教学。
其次,数学概念是发展思维、培养数学能力的基础。
概念是思维形式之一,也是判断和推理的起点,所以概念教学对培养学生的思维能力能起重要作用。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。例如,“含有未知数的等式叫做方程”,这是一个判断。在这个判断中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1)56+23=79(2)23-x=67(3)x÷5=4.5(4)44×2=88(5)75÷x=4(6)9+x=123 在概念教学过程中,为了使学生顺利地获取有关概念,常常要提供丰富的感性材料让学生观察,在观察的基础上通过教师的启发引导,对感性材料进行比较、分析、综合,最后再抽象概括出概念的本质属性。通过一系列的判断、推理使概念得到巩固和运用。从而使学生的初步逻辑思维能力逐步得到提高。
三、数学概念教学的一般要求 1.使学生准确理解概念
理解概念,一要能举出概念所反映的现实原型,二要明确概念的内涵与外延,即明确概念所反映的一类事物的共同本质属性,和概念所反映的全体对象,三要掌握表示概念的词语或符号。
2.使学生牢固掌握概念
掌握概念是指要在理解概念的基础上记住概念,正确区分概念的肯定例证和否定例证。能对概念进行分类,形成一定的概念系统。
3.使学生能正确运用概念
概念的运用主要表现在学生能在不同的具体情况下,辨认出概念的本质属性,运用概念的有关属性进行判断推理。
四、小学数学概念教学的过程与方法
根据数学概念学习的心理过程及特征,数学概念的教学一般也分为三个阶段:①引入概念,使学生感知概念,形成表象;②通过分析、抽象和概括,使学生理解和明确概念;③通过例题、习题使学生巩固和应用概念。
(一)数学概念的引入
数学概念的引入,是数学概念教学的第一个环节,也是十分重要的环节。概念引入得当,就可以紧紧地围绕课题,充分地激发起学生的兴趣和学习动机,为学生顺利地掌握概念起到奠基作用。
引出新概念的过程,是揭示概念的发生和形成过程,而各个数学概念的发生形成过程又不尽相同,有的是现实模型的直接反映;有的是在已有概念的基础上经过一次或多次抽象后得到的;有的是从数学理论发展的需要中产生的;有的是为解决实际问题的需要而产生的;有的是将思维对象理想化,经过推理而得;有的则是从理论上的存在性或从数学对象的结构中构造产生的。因此,教学中必须根据各种概念的产生背景,结合学生的具体情况,适当地选取不同的方式去引入概念。一般来说,数学概念的引入可以采用如下几种方法。
1、以感性材料为基础引入新概念。
用学生在日常生活中所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过观察、分析、比较、归纳和概括去获取概念。
例如,要学习“平行线”的概念,可以让学生辨认一些熟悉的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,然后分化出各例的属性,从中找出共同的本质属性。铁轨有属性:是铁制的、可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发现,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离处处相等;两条直线没有公共点等,最后抽象出本质属性,得到平行线的定义。
以感性材料为基础引入新概念,是用概念形成的方式去进行教学的,因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。
2、以新、旧概念之间的关系引入新概念。
如果新、旧概念之间存在某种关系,如相容关系、不相容关系等,那么新概念的引入就可以充分地利用这种关系去进行。
例如,学习“乘法意义”时,可以从“加法意义”来引入。又如,学习“整除”概念时,可以从“除法”中的“除尽”来引入。又如,学习“质因数”可以从“因数”和“质数”这两个概念引入。再如,在学习质数、合数概念时,可用约数概念引入:“请同学们写出数1,2,6,7,8,12,11,15的所有约数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的所有分类方法中,哪一种分类方法是最新的分类方法?”
3、以“问题”的形式引入新概念。
以“问题”的形式引入新概念,这也是概念教学中常用的方法。一般来说,用“问题”引入概念的途径有两条:①从现实生活中的问题引入数学概念;②从数学问题或理论本身的发展需要引入概念。
4、从概念的发生过程引入新概念。
数学中有些概念是用发生式定义的,在进行这类概念的教学时,可以采用演示活动的直观教具或演示画图说明的方法去揭示事物的发生过程。例如,小数、分数等概念都可以这样引入。这种方法生动直观,体现了运动变化的观点和思想,同时,引入的过程又自然地、无可辩驳地阐明了这一概念的客观存在性。
(二)数学概念的形成
引入概念,仅是概念教学的第一步,要使学生获得概念,还必须引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念的本质属性。为此,教学中可采用一些具有针对性的方法。
1、对比与类比。
对比概念,可以找出概念间的差异,类比概念,可以发现概念间的相同或相似之处。例如,学习“整除”概念时,可以与“除法”中的“除尽”概念进行对比,去比较发现两者的不同点。用对比或类比讲述新概念,一定要突出新、旧概念的差异,明确新概念的内涵,防止旧概念对学习新概念产生的负迁移作用的影响。
2、恰当运用反例。
概念教学中,除了从正面去揭示概念的内涵外,还应考虑运用适当的反例去突出概念的本质属性,尤其是让学生通过对比正例与反例的差异,对自己出现的错误进行反思,更利于强化学生对概念本质属性的理解。
用反例去突出概念的本质属性,实质是使学生明确概念的外延从而加深对概念内涵的理解。凡具有概念所反映的本质属性的对象必属于该概念的外延集,而反例的构造,就是让学生找出不属于概念外延集的对象,显然,这是概念教学中的一种重要手段。但必须注意,所选的反例应当恰当,防止过难、过偏,造成学生的注意力分散,而达不到突出概念本质属性的目的。
3、合理运用变式。
依靠感性材料理解概念,往往由于提供的感性材料具有片面性、局限性,或者感性材料的非本质属性具有较明显的突出特征,容易形成干扰的信息,而削弱学生对概念本质属性的正确理解。因此,在教学中应注意运用变式,从不同角度、不同方面去反映和刻画概念的本质属性。一般来说,变式包括图形变式、式子变式和字母变式等。
例如,讲授“等腰三角形”概念,教师除了用常见的图形展示外,还应采用变式图形去强化这一概念,因为利用等腰三角形的性质去解题时,所遇见的图形往往是后面几种情形。
(三)数学概念的巩固
为了使学生牢固地掌握所学的概念,还必须有概念的巩固和应用过程。教学中应注意如下几个方面。
1、注意及时复习
概念的巩固是在对概念的理解和应用中去完成和实现的,同时还必须及时复习,巩固离不开必要的复习。复习的方式可以是对个别概念进行复述,也可以通过解决问题去复习概念,而更多地则是在概念体系中去复习概念。当概念教学到一定阶段时,特别是在章节末复习、期末复习和毕业总复习时,要重视对所学概念的整理和系统化,从纵向和横向找出各概念之间的关系,形成概念体系。
2、重视应用
在概念教学中,既要引导学生由具体到抽象,形成概念,又要让学生由抽象到具体,运用概念,学生是否牢固地掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确灵活地应用,通过应用可以加深理解,增强记忆,提高数学的应用意识。
概念的应用可以从概念的内涵和外延两方面进行。(1)概念内涵的应用
①复述概念的定义或根据定义填空。②根据定义判断是非或改错。③根据定义推理。④根据定义计算。例4(1是互质数。(2)判断题:
27和20是互质数()34与85是互质数()
有公约数1的两个数是互质数()两个合数一定不是互质数()
(3)钝角三角形的一个角是 82o,另两个角的度数是互质数,这两个角可能是多少度?
(4)如果p是质数,那么比p小的自然数都与p互质。这句话对吗?请说明理由?
2.概念外延的应用(1)举例
(2)辨认肯定例证或否定例证。并说明理由。(3)按指定的条件从概念的外延中选择事例。(4)将概念按不同标准分类。
例5(1)列举你所见到过的圆柱形物体。
(2)下列图形中的阴影部分,哪些是扇形?(图6-2)
(3)分母是9的最简真分数有_分子是9的假分数中,最小的一个是(4)将自然数2-19按不同标准分成两类(至少提出3种不同的分法)概念的应用可分为简单应用和综合应用,在初步形成某一新概念后通过简单应用可以促进对新概念的理解,综合应用一般在学习了一系列概念后,把这些概念结合起来加以应用,这种练习可以培养学生综合运用知识的能力。
五、小学数学概念教学中应注意的问题
1、把握概念教学的目标,处理好概念教学的发展性与阶段性之间的矛盾。概念本身有自己严密的逻辑体系。在一定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和变化,同时也由于人们认识的不断深化,因此,作为人们反映客观事物本质属性的概念,也是在不断发展和变化的。但是,在小学阶段的概念教学,考虑到小学生的接受能力,往往是分阶段进行的。如对“数”这个概念来说,在不同的阶段有不同的要求。开始只是认识1、2、3、„„,以后逐渐认识了零,随着学生年龄的增大,又引进了分数(小数),以后又逐渐引进正、负数,有理数和无理数,把数扩充到实数、复数的范围等。又如,对“0”的认识,开始时只知道它表示没有,然后知道又可以
表示该数位上一个单位也没有,还知道“0”可以表示界限等。
因此,数学概念的系统性和发展性与概念教学的阶段性成了教学中需要解决的一对矛盾。解决这一矛盾的关键是要切实把握概念教学的阶段性目标。
为了加强概念教学,教师必须认真钻研教材,掌握小学数学概念的系统,摸清概念发展的脉络。概念是逐步发展的,而且诸概念之间是互相联系的。不同的概念具体要求会有所不同,即使同一概念在不同的学习阶段要求也有差别。
有许多概念的含义是逐步发展的,一般先用描述方法给出,以后再下定义。例如,对分数意义理解的三次飞跃。第一次是在学习小数以前,就让学生初步认识了分数,“像上面讲的、、、、、等,都是分数。”通过大量感性直观的认识,结合具体事物描述什么样的是分数,初步理解分数是平均分得到的,理解谁是谁的几分之几。第二次飞跃是由具体到抽象,把单位“1”平均分成若干份,表示其中的一份或几份都可以用分数来表示。从具体事物中抽象出来。然后概括分数的定义,这只是描述性地给出了分数的概念。这是感性的飞跃。第三次飞跃是对单位“1”的理解与扩展,单位“1”不仅可以表示一个物体、一个图形、一个计量单位,还可以是一个群体等,最后抽象出,分谁,谁就是单位“1”,这样单位“1”与自然数“1”的区别就更加明确了。这样三个层次不是一蹴而就的,要展现知识的发展过程,引导学生在知识的发生发展过程中去理解分数。
再如长方体和立方体的认识在许多教材中是分成两个阶段进行教学的。在低年级,先出现长方体和立方体的初步认识,通过让学生观察一些实物及实物图,如装墨水瓶的纸盒、魔方等。积累一些有关长方体和立方体的感性认识,知道它们各是什么形状,知道这些形状的名称。然后,通过操作、观察,了解长方体和立方体各有几个面,每个面是什么形状,进一步加深对长方体和立方体的感性认识。再从实物中抽象出长方体和立方体的图形(并非透视图)。但这一阶段的教学要求只要学生知道长方体和立方体的名称,能够辨认和区分这些形状即可。仅仅停留在感性认识的层次上。第二阶段是在较高年级。教学时仍要从实例引入。教学长方体的认识时,先让学生收集长方体的物体,教师先说明什么是长方体的面、棱和顶点,让学生数一数面、棱和顶点各自的数目,量一量棱的长度,算一算各个面的大小,比较上下、左右、前后棱和面的关系和区别。然后归纳出长方体的特征。再从长方体的实例中抽象出长方体的几何图形。进而可以让学生对照实物,观察图形,弄清楚不改变观察方向,最多可以看到几个面和几条棱。哪些是看不见的,图中是怎样来表示的。还可以让学生想一想,看一看,逐步看懂长方体的几何图形,形成正确的表象。
在把握阶段性目标时,应注意以下几点:
(1)在每一个教学阶段,概念都应该是确定的,这样才不致于造成概念混乱的现象。有些概念不严格下定义,但也要依据学生的接受能力,或者用描述代替定义,或者用比较通俗易懂的语言揭示概念的本质特征。同时注意与将来的严格定义不矛盾。
(2)当一个教学阶段完成以后,应根据具体情况,酌情指出概念是发展的,不断变化的。如:有一位学生在认识了长方体之后,认为课本中的任何一张纸的形状也是长方体的。说明该学生对长方体的概念有了更进一步的理解,教师应加以肯定。
(3)当概念发展后,教师不但指出原来概念与发展后概念的联系与区别,以便学生掌握,而且还应引导学生对有关概念进行研究,注意其发展变化。如“倍”的概念,在整数范围内,通常所指的是,如果把甲量当作1份,而乙量有这样的几份,那么乙量就是甲量的几倍。在引入分数以后,“倍”的概念发展了,发展后的“倍”的概念,就包含了原来的“倍”的概念。如果把甲量当作l份,乙量也可以是甲量的几分之几。
因此,在数学概念教学中,要搞清概念之间的顺序,了解概念之间的内在联系。数学概念随着客观事物本身的发展变化和研究的深入不断地发展演变。学生对数学概念的认识,也需要随着数学学习的程度的提高,由浅入深,逐步深化。教学时既要注意教学的阶段性,不能把后面的要求提到前面,超越学生的认识能力;又要注意教学的连续性,教前面的概念要留有余地,为后继教学打下埋伏。从而处理好掌握概念的阶段性与连续性的关系。
2、加强直观教学,处理好具体与抽象的矛盾
尽管教材中大部分概念没有下严格的定义,而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者
采用分阶段逐步渗透的办法来解决。但对于小学生来说,数学概念还是抽象的。他们形成数学概念,一般都要求有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复,从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作、思维活动逐步建立起事物一般的表象,分出事物的主要的本质特征或属性,这是形成概念的基础。因此,在教学中,必须加强直观,以解决数学概念的抽象性与学生思维形象性之间的矛盾。(1)通过演示、操作进行具体与抽象的转化
教学中,对于一些相对抽象的内容,尽可能地利用恰当的演示或操作使其转化为具体内容,然后在此基础上抽象出概念的本质属性。
几何初步知识,无论是线、面、体的概念还是图形特征、性质的概念都非常抽象,因此,教学中更要加强演示、操作,通过让学生量一量、摸一摸、摆一摆、拼一拼来让学生体会这些概念,从而抽象出这些概念。
例如“圆周率”这一概念非常抽象,有的教师在课前,布置每个学生用硬纸制做一个圆,半径自定。上课时,就让每个学生在课堂作业本上写出三个内容:(1)写出自己做的圆的直径;(2)滚动自己的圆,量出圆滚动一周的长度,写在练习本上;(3)计算圆的周长是直径的几倍。全班同学做完后,要求每个同学汇报自己计算的结果。
然后引导学生分析发现:不管圆的大小,它的周长总是直径的3倍多一点。这时再揭示:这个倍数是个固定的数,数学上叫做圆周率。再让学生任意画一个圆,量出直径和周长加以验证。这样,引导学生把大量的感性材料,加以分析、综合、抽象、概括,抛弃事物的非本质属性(如圆的大小、测量时用的单位等),抓住事物的本质特征(圆的周长总是直径的3倍多一点),形成了概念。
这样教师借助于直观教学,运用学生原有的一些基础知识,逐步抽象,环环紧扣,层次清楚。通过实物演示,使学生建立表象,从而解决了数学知识的抽象性与儿童思维的形象性的矛盾。
(2)结合学生的生活实际进行具体与抽象的转化
教学中有许多数量关系都是从具体生活内容中抽象出来的,因此,在教学中应该充分利用学生的生活实际,运用恰当的方式进行具体与抽象的转化,即把抽象的内容转化为学生的具体生活知识,在此基础上又将其生活知识抽象为教学内容。
例如乘法交换律的教学,往往让学生先解答这样的习题:一种钢笔,每盒10支,每支3元,买2盒钢笔要多少元?学生在实际解答中发现,这道题可以有两种解答思路,一种是先求出“每盒多少元”,再求出“2盒要多少元”,算式是(3×10)×2=60元;另一种是先求出“一共有多少支钢笔”,再求出“2盒多少元”,算式是3×(2×10)=60元。乘法分配律的教学也是让学生解答类似的问题,如:一件上衣50元,一条裤子30元,买这样的5套衣服需要多少元?这样借助于学生熟悉的生活情景,使抽象的问题变得具体化。
同样常见数量关系中的单价、总价与数量之间的关系;路程、速度与时间的关系,工作量、工作效率与工作时间之间的关系等,都应结合学生的生活经验,通过具体的题目将其抽象出来,然后又利用这些关系来分析解决问题。这样的训练有利于使学生的思维逐渐向抽象思维过渡,逐步缓解知识的抽象性与学生思维的具体形象性的矛盾。
但是,运用直观并不是目的,它只是引起学生积极思维的一种手段。因此概念教学不能只停留在感性认识上,在学生获得丰富的感性认识后,要对所观察的事物进行抽象概括,揭示概念的本质属性,使认识产生飞跃,从感性上升到理性,形成概念。
3、遵循小学生学习概念的特点,组织合理有序的教学过程
尽管小学生获取概念有概念形成和概念同化这两种基本形式,各类概念的形成又有各自的特点,但不管以何种方式获得概念,一般都会遵循从“引入一理解一巩固一深化”这样的概念形成路径。下面就概念教学中每个环节的教学策略及应注意的问题作一阐述。
(1)概念的引入要注重提供丰富而典型的感性材料
在概念引入的过程中,要注意使学生建立起清晰的表象。因为建立能突出事物共性的、清晰的典型表象是形成概念的重要基础,因此,在小学数学的概念教学中,无论以什么方式引入概念,都应考虑如何使小学生在头脑中建立起清晰的表象。概念教学一开始,应根据教学内容运用直观手段向学生提供丰富而典
型的感性材料,如采用实物、模型、挂图,或进行演示,引导学生观察,并结合实验,让学生自己动手操作,以便让学生接触有关的对象,丰富自己的感性认识。
如在一节教学分数的意义的课上,一位教师为了突破单位“l”这一教学难点,事先向学生提供了各种操作材料:一根绳子,4只苹果图,6只熊猫图,一张长方形纸,l米长的线段等,通过比较、归纳出:一个物体、一个计量单位、一个整体都可以用单位“1”表示,从而突破理解单位“1”这一难点,为理解分数的意义奠定了基础。
但概念引入时所提供的材料要注意三点:一是所选材料要确切。例如角的认识,小学里讲的角是平面角,可以让学生观察黑板、书面等平面上的角。有的教师让学生观察教室相邻两堵墙所夹的角,那是两面角,对于小学教学要求来说,就不确切了。二是所选材料要突出所授知识的本质特征。例如直角三角形的本质特征是“有一个角是直角的三角形”,至于这个直角是三角形中的哪一个角,直角三角形的大小、形状,则是非本质的。因此教学时应出示不同的图形,使学生在不同的图形中辨认其不变的本质属性。
(2)概念的理解要注重正反例证的辨析,突出概念的本质属性
概念的理解是概念教学的中心环节,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便让学生在理解的基础上掌握概念。促进对概念理解的途径有: 1)剖析概念中关键词语的真实含义
例如,分数定义中的单位“1”、“平均分”、“表示这样的一份或几份的数”,学生只有对这些关键词语的真实含义弄清楚了,才会对分数的概念有了深刻的理解。再如教学“整除”概念之后应帮助学生从以下三方面进行判断,一是判断是否具有“整除”关系的两个数都必须是自然数;二是这两个数相除所得的商是整数;三是没有余数。对定义的分析是帮助学生认识概念的又一次提高。三角形的高的定义:“从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。”这里的“一个顶点”、“垂线”、“垂足”都是一些关键词语。为了让学生理解三角形的高,除了让学生理解字面意思外,往往还需要学生通过实际操作,体会画“高”的全过程。指出画“高”的关键是画垂线,并注意限制条件:“过三角形的一个顶点(可以是任何一个顶点),作到它对边的垂线,顶点和垂足之间的线段”。这样把实际操作的过程和所画的三角形高的图形与定义所叙述的内容对照,使学生准确地理解三角形的高的定义。这实际上是在数学概念建立后,帮助学生对本质属性进行剖析,既将本质属性再次从定义中分离出来,加以明确。
2)辨析概念的肯定例证和否定例证
学生能背诵概念并不等于真正理解概念,还要通过实例突出概念的主要特征,帮助他们加深对概念的理解。教师不仅要充分运用肯定例证来帮助学生理解概念的内涵,同时要及时运用否定例证来促进学生对概念的辨析。在概念揭示后往往要针对教学要求组织学生进行一些练习,如教完三角形按角分类后,可以出示:一个三角形不是直角三角形,并且有两个角是锐角,这个三角形一定是锐角三角形。让学生进行判断,引起学生讨论来巩固三角形的分类,以深化对三角形这一概念的外延的进一步认识。再如,小数的性质揭示后,可以让学生判断0.40、0.030、20.020、2.800、10.404、5.0000各数,哪些“0”可以去掉,哪些“0”不能去掉?从而加深学生对小数性质的理解。
3)变换本质属性的叙述或表达方式
小学生理解和掌握概念的特点之一往往是:对某一概念的内涵不很清楚,也不全面,把非本质的特征作为本质的特征。例如,有的学生误认为,只有水平放置的长方形才叫长方形,如果斜着放就辨认不出来。为此,往往需要变换概念的叙述或表达方式,让学生从各个侧面来理解概念。旨在从变式中把握概念的本质属性,排除非本质属性的干扰。因为事物的本质属性可以运用不同的语言来表达,如果学生对各种不同的叙述和表达都能理解和掌握,就说明学生对概念的理解是透彻的,是灵活的,不是死记硬背的。
4)对近似的概念及时加以对比辨析 在小学数学中,有些概念其含义接近,但本质属性又有区别。如数与数字,数位与位数,奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数、质因数与互质数,周长与面积,等等。对这类概念,学生常常容易混淆,必须及时把它们加以比较,以避免互相干扰。
如学习了“整除”,为了和以前学的“除尽”加以比较,可以设计这样的练习题:下列等式中,哪些是整除,哪些是除尽?(1)8÷2=4(2)48÷8=6(3)30÷7=4„„2(4)8÷5=1.6(5)6÷0.2=30(6)1.8÷3=0.6 引导学生通过分析、比较,从而得出:第(3)题是有余数的除法,当然不能说被除数被除数整除或除尽,其他各题当然能说被除数被除数除尽了。其中只有第(1)、(2)题,被除数、除数和商都是自然数,而且没有余数,这两题既可以说被除数被除数除尽,又能说被除数被除数整除。从上面的分析中,让学生明白:整除是除尽的一种特殊情况,除尽包括了整除和一切商是有限小数的情况。
学习了比之后,可以用列表法设计比与除法、分数之间的联系的习题,从中明确“除法是一种运算,分数是一个数,比是一个关系式”的区别。
(3)重视概念的运用,发挥概念的作用
正确、灵活地运用概念,就是要求学生能够正确、灵活地运用概念组成判断,进行推理、计算、作图等,能运用概念分析和解决实际问题。理解概念的目的在于运用,运用的途径有:
1)自举实例
这是要求学生把已经初步获得的概念简单运用于实际,通过实例来说明概念,加深对概念的理解。有经验的教师,根据小学生对概念的认识通常带有具体性的特点,在学生通过分析、综合、抽象、概括出概念后,总是让他们自举例证,把概念具体化。从具体到抽象又回到具体,符合小学生的认识规律,使学生更准确把握概念的内涵和外延。
例如在学生初步获得了真分数、假分数的概念后,就可以让学生分别举一些真分数和假分数的实例;知道了圆柱的特征后,让学生说说日常生活中有哪些物品的形状是圆柱形的。
2)运用于计算、作图等
例如,如学了乘法的运算定律后,就可以让学生简便计算下面各题。104×25 48×25 101×35×2
(80+8)×25 8×(125+50)34×5×2
在掌握分数的基本性质后,就要求学生能熟练地进行通分、约分,并说明通分、约分的依据。学习了小数的性质后,就可以让学生把小数按要求进行化简或改写;学习了等腰三角形,可设计一组操作题;画一个等腰三角形;画一个顶角60度的等腰三角形;画一个腰长为2厘米的等腰直角三角形。
3)运用于生活实践
数学概念来源于生活,就必然要回到生活实际中去。教师引导学生运用概念去解决数学问题,是培养学生思维,发展各种数学能力的过程。并且,也只有让学生把所学习到的数学概念,拿到生活实际中去运用,才会使学到的概念巩固下来,进而提高学生对数学概念的运用技能。为此,教师在教学中应当根据教材内容和学生实际,在掌握小学数学教材逻辑系统的基础上,有意识地深化和发展学生的数学概念。
例如在学习圆的面积后,一位教师就设计了这样的问题:“我们已经学习了圆面积公式,谁能想办法算一算,学校操场上白杨树树干的横截面面积?”同学们就讨论开了,有的说,算圆面积一定要先知道半径,只有把树砍下来才能量出半径;有的不赞成这样做,认为树一砍下来就会死掉。这时教师进一步引导说:“那么能不能想出不砍树就能算出横截面面积的办法来呢?大家再讨论一下。”学生们渴望得到正确的答案,通过积极思考和争论,终于找到了好办法,即先量出树干的周长,再算出半径,然后应用面积公式算出大树横截面面积。课后许多学生还到操场上实际测量了树干的周长,算出了横截面面积。再如,在教学正比例应用题时,可以启发学生运用旗杆高度与影长的关系,巧妙地算出了旗杆的高度。这样通过创设有效的教学情景,教师适时点拨,不但启迪了学生的思维,而且培养了学生学以致用的兴趣和能力,也加深了对所学概念的理解。
(4)注重概念之间的比较分类,深化概念
小学数学知识的特点是系统性强,前后联系密切,但是由于小学生思维发展水平和接受能力的限制,有些知识的教学往往是分几节课或几个学期来完成,这样难免在不同程度上削弱知识间的联系。对一些有联系的概念或法则,在一定阶段应进行系统的整理,使学生在头脑中建立起知识的网络,形成良好的认知结构。尤其是中高年级,可以引导学生将概念进行分类,明确概念间的联系和区别,以形成概念系统。
小学数学概念教学设计 小学数学概念教学设计案例篇三
浅谈小学数学概念教学
在数学教学中,概念是学好数学法则、定律、性质、公式等数学知识的基础和关键,是培养学生数学能力的前提,是解答数学实际问题的重要条件.因此,把握数学概念的教学十分重要.一、依据掌握概念的心理过程进行教学
数学概念教学必须适合学生掌握概念的心理过程,这个过程一般有两种形式,即概念的形成和概念的同化.因此,我们在概念教学过程的设计和实施时,应以它为依据.1.概念的形成
概念的形成是指从大量的同类事物的不同例证中发现该类事物的本质属性,这种获得概念的形式叫做概念的形成.概念形成的过程,简单地概括为“具体―抽象”的过程.概念的形成主要依赖于辨别和概括这两种心理活动,而辨别与概括又贯穿于“感知―表象―概括―概念系统”这一发展过程中.所以,我们要按学生的认知规律组织教学,增强辨别不同正、反例证的能力.例如,一位教师为了丰富学生对三角形的感性认识,准备了3厘米长的小棒3根,及4厘米、2厘米、8厘米长的小棒各一根.教师请学生先用8厘米长的小棒去围三角形,学生发现随便配上哪两根小棒都不能围成三角形.“为什么呢?”“这根小棒太长了,另外两根小棒太短了”.“如果把它们换掉,你们能将它们围成三角形吗?”学生互相讨论,结果围成了各种三角形.在实践活动中,学生初步感知三角形的特征后,师生共同抽象出三条线段围成封闭的图形是三角形的两个本质属性,然后概括出三角形的概念:由三条线段围成的图形叫做三角形.再通过变式练习,深化了学生对三角形的认识.2.概念的同化
概念的同化是利用学习者认知结构中原有的有关概念,以定义的方式直接向学习者揭示概念的本质属性,这种使学习者掌握概念的方式叫概念的同化.采用概念同化的方式学习概念,前提是学生已积累了许多初级概念,它不同于概念形成过程中的辨别、抽象、分析和概括,一般适用于高年级教学.利用概念同化的方式掌握概念,它是由概念到概念,比较抽象.所以,我们要采取“加强与表象联系”、“强化新概念的本质属性”等方法,教会学生辨析新旧概念的异同.例如,建立比较小数大小的概念时,可以联系整数大小的比较及学生所熟悉的元、角、分等知识进行教学.教师可先出示654与543.8321与8436,让学生回忆比较整数大小的方法,再出示例题,比较2.35元和2.41元的大小.引导学生思考:2.35元和2.41元的整数部分完全相同,2.35元的十分位是3,表示3角;2.41元的十分位是4,表示4角,所以2.35元0.059米.这两道例题都是借助学生已有的知识,帮助学生建立起比较小数大小的概念.二、使用知识迁移的理论方法进行教学
知识迁移是指先前学习的知识对以后学习的知识所产生的影响和作用.知识迁移的理论有:形式训练理论、共同因素理论和概括化理论.为了加强新旧知识之间的联系,教师要注意知识间异同点的揭示,提高学生对知识的概括水平,实现正迁移,防止负迁移,发挥迁移规律在数学概念教学中的作用.例如,教学“平行四边形的面积公式”时,第一步,复习长方形的面积公式:长 × 宽;第二步,将平行四边形沿一条对角线或沿一顶点作对边的高,将它分成两部分,然后拼成等积的长方形;第三步,根据等积概括出平行四边形面积公式:底 × 高.这条思路和经验,为学习三角形面积公式的迁移作了铺垫.那么,在“三角形面积公式”教学时,教师只要适当提示,学生就会根据已有的知识和经验,将平行四边形转化为两个等面积的三角形,通过与平行四边形面积公式建立联系,自然地推导出三角形面积公式,实现知识、经验的迁移.三、抓住概念的内涵和外延进行教学
学生掌握数学概念大致有三种水平:第一种是形式主义地掌握概念,第二种是概括地掌握概念,第三种是创造性地掌握概念.因此,我们在概念教学中必须抓好概念的内涵和外延这一关键,实现概括地或创造性地掌握概念.1.概念的内涵
概念的内涵是指概念所反映的对象的本质属性.本质属性是指对这一类事物有决定意义的属性.它必须具备两个条件:第一,这类事物本身必须具备这种属性,否则就不是这类事物;第二,能把这类事物与其他事物区别开来.譬如,长方体有许多属性,但它的本质属性只有两点:第一,它是个六面体;第二,它六个面都是长方形(有时有两个相对面是正方形).也就是说,长方体必须具备这两个属性,否则它就不是长方体.显然,这两个属性能把长方体与正方体等其他多边形体区分开来.2.概念的外延
概念的外延是指这一概念所反映的对象的总和.譬如,分数这个概念的外延是真分数、假分数(带分数);平行四边形这个概念的外延是一般平行四边形、长方形、菱形、正方形等对象的总和.概念的内涵和外延,两者之间的关系是相互制约、相互依存的,但它们又是统一的、不可分割的两个方面.因此,我们必须明确掌握概念的内涵和外延这两个方面.例如,角、直角、锐角、钝角、平角、周角等概念教学.角:其内涵是从一点引出两条射线所组成的图形,它的外延有直角、锐角、钝角、平角、周角.直角:内涵指角的两条边成90°的角,它的外延就是90°的角.锐角:内涵指角的两条边所成的角小于90°,它的外延是指适合0°
小学数学概念教学设计 小学数学概念教学设计案例篇四
小学数学概念教学的探讨
【附小教研片】
下宫小学
俞裔银
【内容摘要】数学课堂教学无论是形式、还是内容都随着新课程理念推行,过去的教学方式正受强有力的冲击。在新课程理念下如何进行数学概念教学,是每个小学数学教师需要认真研究的问题。
【关键词】小学
数学
新课标教学
数学概念是揭示物质的本质、属性与共同特征,具有抽象性、复杂性、严密性,并蕴含着丰富的内涵,具有固定和同化新知识的功能。一切的数学规则的研究、表达与应用都离不开数学概念,它是数学的基础,是学生计算能力提高,空间观念形成,思维能力发展的前提和重要保证。学习数学的过程就是一个不断运用数学概念进行比较、分析、综合、概括、判断、推理的思维过程。因此数学概念的教学是数学教学的核心,有着极其重要的地位。
一、小学数学概念教学的重要性
1、正确理解数学概念是掌握数学基本知识和基本技能的基石
概念反映的是事物的本质属性,我们要认识、把握某个事物,必须首先弄清这个事物的本质属性,否则就无法正确地认识事物。例如:加法这个概念,指的是把两个数合并在一起,求一共是多少的运算方法。如果学生不理解加法的概念,只知加法的符号表示,那么他可能会十分顺利地计算加法式子,而一遇到实际生活的问题,就会犯糊涂了,或者思维混乱,或者死套所谓的经验,见到“一共”就加,见到“比多”、“比少”就减。所以我们要想使学生真正学会数学,掌握知识,并能正确运用数学知识解决实际问题,必须重视概念教学,充分认识概念教学的重要意义。
2、正确掌握概念并能灵活运用是发展数学思维的必要前提条件
可以说,概念是思维的“细胞”,在概念、判断、推理这三种思维形式中,概念是起点,没有概念,或是概念错误,就无法形成正确的判断,无法进行正确的推理。例如:下列各分数中,哪些是真分数?哪些是假分数?3/
3、4/
3、2/
3、9/
4、39/40。要解答这道题,学生必须对真分数、假分数的概念十分清楚,才能去判断和推理。正是在应用正确的概念,进行判断、推理的过程中,学生的数学思维能力才逐步得到提高。在教学过程中,数学概念也是在学生积累了一定的感性知识,通过比较、抽象、概括、分析、综合等一系列思维方法的基础上建立起来的,掌握概念的过程,实际上也是培养、锻炼学生数学思维能力的过程。
3、概念的教学有助于学生知识结构的建立和迁移能力的增强
实践证明,学生对最基本的概念理解得越深刻,学习有关的知识越容易,迁移能力也就越强。例如:只要学生真正掌握了商不变性质,就有助于以后分数、比例的学习,能顺利地理解分数的基本性质和比例的基本性质,解决通分、约分、扩大、缩小的问题。而且只有以最基本的概念为核心,通过不断的迁移,学到的知识才不是孤立的、零散的,才有助于形成主次分明,纲目清楚的认知结构,才便于学生理解、迁移和记忆。例如:分数意义、分数计算、分数百分数应用题这部分知识,其中分数意义是最基本的、最核心的一个概念,有关的知识在这个概念的统帅下才形成了一个有机的知识结构。
二、当前小学数学概念教学中存在诸多问题
1、削弱了概念的教学。教师对概念的讲解浮光掠影,粗枝大叶,对概念所包含的丰富内涵理解不够,挖掘不够,只通过模仿记忆和大量的练习,让学生快速熟悉知识和技能。
2、缩短了形成的过程。将学生要探索的概念知识全盘托出,要求学生死记硬背,学生只知其然而不知其所以然,记得快也忘得快。
3、忽视了概念的运用。认为只要概念知识学好了,自然会应用了。概念抽象概括了,并不等于教学完成了,学生只是记住了概念,而不知如何灵活运用概念去解决实际问题。
4、忽略了概念间的联系。学习某个概念,不注意联系相关联的概念,将许多有联系的概念孤立的保留在学生的头脑中,达不到概念间的沟通,不能组成概念系统,形成认知网络。
三、小学数学概念教学实施的策略
概念教学是小学数学教学中的重要部分,由于它的抽象性和小学生思维的形象性是一对矛盾,使它在教学中成为一个难点。因此,如何引导学生学习数学概念,将枯燥的数学概念生动化、情境化,使学生乐于接受,易于接受,这便成为教师要探讨的课题。概念教学的策略可分为四个步骤:引入概念,形成概念,内化概念,应用概念。
(一)引入概念
概念如何引入,直接关系到学生对概念的理解和掌握。《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。”《标准》的这一理念,着眼于学生终生学习的愿望和能力,要求概念教学要从学生的生活经验和知识经验出发,根据学生的年龄特点和心理发展规律选材,题材要广泛,呈现形式要丰富多彩,充满着学生乐于接触的、有价值的数学题材。在概念教学时创设现实而有吸引力的学习情境,尤为重要,它可以激发学生学习数学的兴趣和动机,让学生在自然的情境中,产生积极主动地学习新知识的愿望。
概念的引入方式要恰当,要根据不同的概念创设不同的情境。创设情境引入概念的方式很多。创设故事情境引入,例如在教学“小数点移动”时,可这样引入:“大家爱听〈〈西游记〉〉的故事吗,今天老师给大家讲孙悟空智斗黄牛怪的故事。唐僧师徒四人来到黄牛山,碰到山上的黄牛怪,黄牛怪大声叫着:猴头,交出唐僧!孙悟空回答道:休想,看我金箍棒!说着从耳朵里掏出神奇的宝贝,高喊:变、变、变,只见金箍棒变得越来越长,从0.009米变成了0.09米又变成0.9米再变成9米,没等黄牛怪反应过来,就被金箍棒压死了。”这样的情境引入,使学生兴趣盎然地进入了新课的学习。动手操作情境引入,一些有数学背景的玩具和游戏不仅能愉悦学生的情绪,陶冶学生的性情,还能激发学生浓厚的探究兴趣。例如:教学轴对称图形时,学生用同样的纸比赛折飞机飞行,发现有的飞机飞得很平稳,有的飞机却飞得不平稳,通过观察发现,飞得不平稳的飞机是因为机翼两侧不对称,飞得平稳的飞机是对称的,从而引入这节课的学习。
教师在设计具体情境时,切忌单刀直入,全盘托出,而应该根据小学生的年龄特征,紧密地联系学生已有的知识和经验,从旧到新,由浅入深,循序渐进的引入。
(二)形成概念
概念的形成是概念教学的中心环节。《标准》指出:“有效的数学学习活动,不能单纯地依赖模仿与记忆,数学学习活动应当是一个生动活泼的,主动的和富有个性的过程。”数学的学习方式不再是单一的、枯燥的,以及被动听讲和练习为主的形式。它应该是一个充满生命力的过程,学生要有充分的从事数学活动的时间和空间,在自主探索,亲身实践,合作交流的氛围中,解除困惑,更清楚地明确自己的思想,并有机会分享自己和他人的想法。
1、在动手实践中形成概念。动手实践是数学学习的一种手段,目的是更好地促进学生对数学概念的理解,能用数学的语言、符号进行表达和交流。数学课本中设计了大量便于学生进行动手操作的内容,如用小棒、圆片来理解“平均分”“10以内数的组成;用小棒搭建若干三角形、四边形等探索规律;用搭积木、折叠、剪贴等方式,理解空间图形、空间图形与平面图形之间的关系等等,都可以让学生通过实际操作来理解。能借助动手操作来理解的概念知识很多,需要教师在教学设计时,创造性地用教材,融入自己的科学精神和智慧,精心挖掘教材中的资源,设计出丰富多彩的实践活动来。
2、在探索交流中形成概念。教师要为学生提供自主探索的机会,让学生从中发现问题和解决问题。比如:教学“轴对称图形”时,可以出示松树、衣服、蝴蝶、双喜等图形,让学生独立思考、自主探索这些图形所具有的性质,得出“这些图形都是沿一条直线对折,左右两侧正好能够完全重合……”这便是“轴对称图形”的概念。为了加深学生的理解,当学习了“轴对称图形”后,还可以让学生列举出生活中的“轴对称图形”,像数字、字母、汉字、人体、教室等物体。学生在探索和交流的中,经历了观察、实验、归纳、类比、推理等过程,概念知识在学生的头脑中也得以形成。
3、在合作交流中形成概念。小组合作学习是以小组学习为主体的一种学习活动,全班的学生被分成若干个小组,学生在小组中互相交流、彼此尊重,体现了学生作为主体的尊严,使学生产生“我要学”的强烈愿望。学生通过担任各种角色,逐渐培养起沟通、理解和合作的技巧,形成了对他人、对集体积极的态度,形成有自己个性的正确的价值观。经过不同想法的碰撞,学生的交流能力、表达能力得到锻炼,概念知识得以形成。例如,在教学“年、月、日”时,教师可以将学生分成四人一组,进行多次合作学习。教师发给每组两张表格,让学生根据2003年的年历填写,并具体写出要求:数一数、填一填。
合作要求:
1、先两人一组,互相说一说;
2、再四人一小组,共同记录表格;
3、合作小组中的每个成员都要承担一定的任务。
完成后,再次进行合作。教师再发给每组几张表格,让学生根据2000年至2007年的年历填写。任务完成后,进行交流。每个学生在小组中交流自己的发现和体会,讨论小组合作的结果,然后让各小组在全班交流探索到的知识,分享成果。最后,教师适时再让小组合作自行创造新的年历。
(三)内化概念
初步形成的概念,巩固程度差,容易泛化为邻近概念。这说明一个事实,概念抽象形成了,并不等于牢固掌握,真正理解了,这时需要适时内化。教师应通过多种形式的训练使得学生对概念知识的掌握在发展中飞跃。比如:可以在对比中内化概念,对一些容易混淆的数学概念,学生往往难以理解,利用比较辨析的方法可以找出它们之间的联系与区别,形成确切的数学概念。例如:教学“正反比例”后,可以出示下面一组题目: ① 4小时行了180千米,照这样的速度,从甲地到乙地要行8小时,求甲乙两地的路程。②
一辆汽车从甲地开往乙地,每小时行45千米,8小时可以到达。如果每小时行40千米,要几小时才能到达?让学生思考以下问题:题目中讲的是哪两种相关联的量?哪种量随着另一种什么量变化?相对应的哪两种量的什么值一定?然后运用比例的概念判断各成什么比例,再引导学生对正反比例的概念进行对比,辨析其异同点,并填写下表。
这样的方法,使学生对正反比例的联系与区别有了实质性的理解,从而进行实际应用就感到轻松了。
概念建立起来以后,还有一个重要的任务就是把新的概念以一定的方式组织起来,纳入原有的概念体系中去,找出概念间的纵横联系,达到概念间的沟通,从中寻找概念的生长点、连接点,组成概念系统,形成概念网络,便于记忆和提取,为进一步学习新的概念打下坚实的基础。例如:《等腰三角形的认识》,由于“等腰三角形”是属于三角形,教师首先引导学生在自己的认知仓库中提取出有关三角形的知识,也就是说关于“等腰三角形”的知识可以放到三角形中来理解,那么学生就知道了新知识要放到头脑中三角形这个大类别里;又由于“等边三角形”是特殊的等腰三角形,所以教师又引导学生用已获得的等腰三角形去同化等边三角形。在这个过程中,不仅使学生获得了新概念,而且使原有概念的认识得到扩展,并在知识不断扩展中逐步形成有关概念的网络。
(四)应用概念
在传统的概念学习中,接受概念知识被确定为最终目的,学生被动的从事着单调的、大量的解题、考试等学习活动。学习概念的最终目的应该是为了应用概念来解决实际问题,只有把学生学到的概念知识应用到实践中去,学习才有意义。对于概念的应用还存在着一个误解,认为只要概念知识学好了,自然就会应用。实际上,很多数学家都认识到培养学生的应用意识和能力是一件很不简单的事情,它绝不是概念学习的附属产品,为了培养应用意识,必须使学生受到必要的概念应用的实际训练,否则强调应用意识就会成为空洞的说教。教师要提供给学生亲身应用所学知识和思想方法去思考和处理问题的机会。使学生在解决实际问题的过程中逐步形成应用概念的意识和初步的应用能力。
应用概念的形式可以是多种多样的。智力游戏类。例如:学习了简单的分数认识后,可以设计“我说你拿”的游戏:一个同学说拿出全部的几分之几,另一个则从10根小棒中拿出相应的数量。应用数学概念知识破解游戏中的奥秘。在游戏中学生兴致高涨,同时也加深了对分数这个概念知识的理解。设计创作类。例如:学习了轴对称图形后,可以让学生用纸剪出自己喜欢的图形,既可以加深对轴对称图形的理解,又可以充分展示学生的想像力和创造力,增强对数学学习的信心和兴趣。论文调查类。例如:学习了简单的小数大小比较之后,安排一个调查活动,让学生到周围的几家超市或商店调查同样的商品的价格,然后比较并做出选择,知道怎样购买商品,这样可以真正做到学以致用。
总之,在教学概念时,应视具体的概念,综合运用各种教学方法,方可达到最佳的效果,不存在一种适合于所有概念教学的万能模式或方法。因此,在课程改革中,教师应加强对概念教学的研究,大胆实践,不断创新,丰富概念教学的方法和策略。
参考文献
1.全日制义务教育《数学课程标准》(实验稿),中华人民共和国教育部制订,北京师范大学出版社 2001 2.全日制义务教育《数学课程标准》(实验稿)解读,教育部基础教育司组织数学课程标准研制组编写,北京师范大学出版社 2002 3.走进新课程与课程实施者对话,教育部基础教育司组织编写,北京师范大学出版社 2002 4.合作学习的理念与实施,王坦 中国人事出版社 2002 5.新课程学习方式的变革,吕世虎 巩增泰 中国人事出版社2004 6.小学数学新课程教学法,陈清容 吕世虎
首都师范大学出版社 2004
小学数学概念教学设计 小学数学概念教学设计案例篇五
如何进行小学数学概念教学
小学数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不足,抽象思维能力差,理解起来有一定的困难。因此教师在有关概念的教学过程中,一定要从小学生年龄实际出发,这样才会收到好的教学效果。
一、为学生提供充分的探究空间、创设条件、营造氛围,引导学生自主探究、合作交流,让学生充分理解数学概念的意义。
1.直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2、从动手操作中形成概念。
俗话说:“实践出真知,手是脑的老师。”数学源于实践,又服务于实践,在教学中尽量让学生参与动手实践,让学生摸一摸,拼一拼,移一移,折一折,减一减等形式的动手操作活动,获取丰富的感性认识,再经过大脑加工,由表及里,由浅入深,去伪存真地辩论分析,发现其中的奥秘,总结出规律,逐步加深对概念的理解。例如,在教学“圆的面积”时,1 先让学生把画好的圆平均分成4份、8份、16份、32份······然后剪下来,再把剪好的扇形拼在一起,拼成近似平行四边形。通过剪、拼的操作,使学生感受到分得越多,所拼成的平行四边形越接近。然后用16份的圆让学生通过小组合作的形式,在拼看还能拼成那些学过的平面图形。由此,学生可以把圆面积推导公式转化为已学过的五种平面图形,根据圆与五种平面图形的关系,自己探索出圆的面积计算公式,从而利用旧知识解决了新问题,学生的思维在兴趣驱使下,不断升华,使他们体会到成功的体会。
3、概念教学中的类比迁移
概念教学是枯燥的,有些概念往往是课上掌握很好,综合在一起就出现了概念的混淆现象;有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
4、概念在小组合作中拓展。
数学概念教学中教师作为组织者,引导者,要多为学生提供交流的机会,组织学生进行小组讨论、合作交流,让学生充分阐述自己的观点和思考过程,并分享他人的成果,在心与心得交流,思维之间的碰撞中进行思维的拓展与整合,从而找到探究的最优方法,归纳、总结并概括出概念的本质属性,进一步明确概念的内涵与外延。教师要根据编者意图组织学生合作交流、讨论探索,在合作学习中掌握知识。在教学“有余数除法”后,教师设计了这样的题供学生交流学习。30人的旅游团乘车到机场,面包车每辆限坐7人,的士每辆限座4人。小组讨论:若是你,你要怎样租车?学生列式为30÷7=4„„2,要租5辆面包车;30÷4=7„„2,要租8辆的士。这时教师进一步引导学生:大家想一想“还可以怎样租车?”分组讨论,学生又列出各种租车方案。学生通过这样的教学方式培养了学生合作交流的意识。
二让学生兴趣中学习枯燥的数学概念,更好地理解数学概念的意义。
激发出学生的学习兴趣和积极主动的探究热情,把数学概念教学根植于一个现实需要的问题情境之中,结合学生的生活实际,把抽象的数学概念转化为学生的具体生活情境,激发学生的好奇心和求知欲,产生迫不及待的探究热情,从而真正达到“我要学”的目的,极大地提高课堂教学效率。