初二数学优秀教学设计(精选12篇)
对于学习过程中的错误和失败,我们应该总结教训并从中吸取经验,以避免再次犯同样的错误。在写总结时,要着重强调重点和突出亮点。希望大家在阅读这些总结范文的同时,也能够对自己的写作进行反思和反馈。
初二数学优秀教学设计篇一
物理天平进行称量之前,指针应指在刻度中央。若指针偏在标尺左侧,将横梁左端螺丝向左调,或将横梁右端螺丝向左调,均能使指针回到标尺中央。当指针向右偏时,横梁螺丝(不论左端或右端的螺丝)应向右调,横梁螺丝调节方向可概括为:
左偏左调,或者左—左,
右偏右调,或者右—右。
托盘天平的指针在横梁上方,故横梁螺丝的调节方向跟物理天平相反。只要熟记物理天平的口诀,联想记忆托盘天平螺丝要反调,就不会混淆了。
(二)滑动变阻器的使用。
滑动变阻器分上下两层,上层钢杆和下层电阻丝各有两个接线柱,为了变阻,使用时应上下各用一个接线柱。可简记为:
一上一下,各用一个。
根据这一接法,连接实物时就不必拘泥于电路图中滑动变阻器的接线方向,从而选择短距离,避免交叉的布线方式。
(三)连接电路的入门方法。
先串后并。
这样做,对初学者能起到化难为易的作用。
(四)防止读错数据的一种方法。
物理量具的刻度方向不尽相同。量筒和温度计的上刻度值比下刻度值大,而弹簧和比重计则相反。再如0.6安培表,每小格刻度值是0.02安培。当指针指在没有标值的地方时,粗心的同学常会读错数据。为防止读错,可以记住这样一个口诀:
匀中助读。
意思是说,可以先把指针相邻的两个标度值中点的值读出来,再读指针处的数据。
初二数学优秀教学设计篇二
这节课的重难点是掌握单项式与多项式相乘的法则并会运用。
一复习引入。
二引入新课。
举出三个例子,提问学生它们等于什么?你是怎么样计算的?
分小组讨论,让学生自己探索出单项式乘以多项式的法则,在探索过程中运用的以前学生的乘法分配律,推出单项式乘以多项式转化成单项式乘以单项式。
注意在进行运算时的运算顺序以及符号的确定。
例题讲解。
评讲例一中的(1)、(3)。第一道题主要讲述了做题过程的书写。第二道题,单项式带着负号,给学生强调连同负号把它看成整体,乘以多项式的每一项,首先要确定每一项的符号,再进行单项式乘以多项式中的每一项,不能漏乘,最后合并同类项,化简到最简形式。
跟踪训练这种类型的题、
课堂练习。
这节课以学生练习为主,学生对法则的巩固和运用。
1、在教学过程我始终围绕学习目标和学习重难点展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容。充分调动了学生的学习的积极性和主动性,以学生为主体地位。
2、单项式乘以多项式,这一部分的内容是依据乘法分配律。要注意运算时的运算顺序以及确定的符号,在这过程中强调不要漏乘。
初二数学优秀教学设计篇三
分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有四种:
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题在数字问题中要掌握十进制数的表示法.
(3)工程问题基本公式:工作量=工时×工效.
(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。
等腰三角形判定。
中线。
1、等腰三角形底边上的中线垂直底边,平分顶角;。
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;。
角平分线。
1、等腰三角形顶角平分线垂直平分底边;。
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线。
1、等腰三角形底边上的高平分顶角、平分底边;。
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
2、有两条高相等的三角形是等腰三角形。
文档为doc格式。
初二数学优秀教学设计篇四
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法。
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析。
教材p151引例的意图。
(1)、主要目的是用来引入极差概念的。
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量。
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析。
本节课在教材中没有相应的例题,教材p152习题分析。
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是.
2、一组数据3、-1、0、2、x的极差是5,且x为自然数,则x=.
3、下列几个常见统计量中能够反映一组数据波动范围的是()。
a.平均数b.中位数c.众数d.极差。
4、一组数据x、x…x的极差是8,则另一组数据2x+1、2x+1…,2x+1的极差是()。
a.8b.16c.9d.17。
答案:1.497、38502.43.d4.b。
七、课后练习:
1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是()。
a.0.4b.16c.0.2d.无法确定。
在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是()。
a.87b.83c.85d无法确定。
3、已知一组数据2.1、1.9、1.8、x、2.2的平均数为2,则极差是。
4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是。
5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)。
90、95、87、92、63、54、82、76、55、100、45、80。
计算这组数据的极差,这个极差说明什么问题?
将数据适当分组,做出频率分布表和频数分布直方图。
20.2.2方差(第一课时)。
一.教学目标:
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二.重点、难点和难点的突破方法:
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式。
3.难点的突破方法:
方差公式:s=[(-)+(-)+…+(-)]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三.例习题的意图分析:
1.教材p125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2.教材p154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五.例题的分析:
教材p154例1在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六.随堂练习:
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)。
甲:9、10、11、12、7、13、10、8、12、8;。
乙:8、13、12、11、10、12、7、7、9、11;。
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
测试次数12345。
段巍1314131213。
金志强1013161412。
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐。
2.段巍的成绩比金志强的成绩要稳定。
七.课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4。
乙:9、5、7、8、7、6、8、6、7、7。
经过计算,两人射击环数的平均数相同,但ss,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是()。
甲:0、1、0、2、2、0、3、1、2、4。
乙:2、3、1、2、0、2、1、1、2、1。
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)。
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
4.=10.9、s=0.02;。
=10.9、s=0.008。
选择小兵参加比赛。
初二数学优秀教学设计篇五
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。
教学目标。
知识与技能。
1.知道什么是二次根式,并会用二次根式的意义解题;。
2.熟记二次根式的性质,并能灵活应用;。
过程与方法。
通过二次根式的概念和性质的学习,培养逻辑思维能力;。
情感态度价值观。
1.经历将现实问题符号化的过程,发展应用的意识;。
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点。
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;。
难点:确定二次根式中字母的取值范围。
教学方法。
启发式、讲练结合。
教学媒体。
多媒体。
课时安排。
1课时。
一、引入。
1.什么叫平方根、算术平方根?
2.用带有根号的式子填空,看看写出的式子有什么特点:
学习内容:
一、情境创设一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。求这块铁皮的长和宽。
一般情况下,应设要求的未知量为未知数;应从题中寻找未知数所表示的未知量与已知量之间的等量关系;这个问题的等量关系是长宽高=容积与长=宽2。
分析:如果设这两个月的利润平均月增长的百分率是x,那么7月份的利润是2500(1+x)元,8月份的利润是2500(1+x)2元。
初二数学优秀教学设计篇六
3、角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。
4、推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。
5、边边边公理(sss)有三边对应相等的两个三角形全等。
6、斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。
7、定理1在角的平分线上的点到这个角的两边的距离相等。
8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。
9、角的平分线是到角的两边距离相等的所有点的集合。
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
初二数学优秀教学设计篇七
分式的概念与意义(即了解分式的形式(a、b是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.)。
设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。
学习难点:理解和掌握分式有无意义、分式值为零时的条件。
设计意图:由于分式的分母中含有字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。
初二数学优秀教学设计篇八
板书:
科学之旅(序)。
1、物理是研究光、电、热、力等现象的科学。
2、物理是有趣的、有用的。
3、怎样学好物理?
(1)善于观察,乐于动手(2)勤于思考,重在理解(3)联系实际,联系社会。
注:注重观察与实验,勤于思考,注意理解。
单元整体说明。
第一章机械运动。
知识结构:第一节长度和时间的测量第二节运动的描述。
第三节运动的快慢第四节测量平均速度。
教学目标:
1、知道机械运动和参照物的概念,会判断物体是运动还是静止的,会选择参照物,理解物体运动和静止的相对性。
2、知道速度表示物体运动的快慢,知道速度的单位,能用速度公式进行简单的计算,知道匀速直线运动的概念,会求平均速度。
3、知道长度单位并会换算,会用刻度尺测量物体长度。知道时间单位,并会换算,会用停表测量时间,知道误差的概念、产生原因和减小误差的办法。知道误差不是错误。
重点:运动和静止的判断、参照物的选取,速度概念、公式的理解和运用,用刻度尺测量长度。难点:参照物,速度计算,长度测量,误差减小方法。
课时安排:本章共4节,安排7课时。
初二数学优秀教学设计篇九
教学目标:
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.。
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.。
4.培养学生耐心细致、严谨的数学思维品质.。
重点、难点:
1.多项式除以单项式的法则及其应用.。
2.理解法则导出的根据。
课时安排:
一课时.。
教具学具:
投影仪、胶片.。
教学过程:
1.复习导入。
(l)用式子表示乘法分配律.。
(2)单项式除以单项式法则是什么?
(3)计算:
(4)填空:
2.讲授新课。
(2)要求学生说出式子每步变形的依据.。
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.。
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)p1501,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为。
3.小结。
初二数学优秀教学设计篇十
定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。
【第八章数据的代表】。
定义:一般地,对于n个数x1,x2,?xn,我们把1/n(x1+x2+?+xn)叫做这个数的算术平均数,简称平均数,记为x。
为a的三项测试成绩的加权平均数。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
初二数学优秀教学设计篇十一
1、教学过程始终围绕教学目标展开。我首先复习了单项式乘以单项式的知识,然后让学生自己得出本节课的研究内容,并举出了一个单项式乘以多项式的实例。在进行单项式乘以多项式的法则的生成教学时。我先在具体情境中让学生用不同方法计算长方形面积从而抽象出一个单项式乘以多项式的等式,并引导学生用学过的知识来说明这个等式的正确性。在这点上,我认为自己处理的比较好。在接下来的知识应用中用适量例题来掌握法则的运用。例题难度呈阶梯形,层层深入。用适量练习让学生巩固和加深法则的应用。
2、给学生创设了一个轻松和乐于向上的学习环境。在上课过程中,我关注学生的情感。新课堂改革,不应该是对原有课堂的全盘否定,原有课堂教学中对学生的表扬和鼓励应该在新课堂教学中得到更好的体现,因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。
3、对学生举出的单项式乘以多项式的实例在得出法则后未能解决。对部分练习中渗透的对后续知识的学习有帮助的思想没能进行很好的点拨。
初二数学优秀教学设计篇十二
1、理解极差的概念,知道极差等于一组数据中最大数与最小数的差。
2、引导学生发现极差能反映一组数据中两个极端值之间的差异情况,是刻画一组数据离散程度的一个统计量。
3、能够列举几个利用极差进行比较的实例。
4、生体会数学与生活密切相关。
通过一系列富有启发性、层层深入的问题,引导学生广泛思考和探索。通过对解决问题的反思获得解决问题的经验,结实显示生活中的现象。
通过与生活实际紧密联系的大量问题的解决,引发学生学习数学的兴趣,体会数学源于生活;通过与数据集中趋势比较学习,培养学生独立思考、勇于创新的科学精神,并形成实事求是的科学态度。
极差概念的理解。
极差概念的引入。
问题:为了比较甲、乙两种棉花品种的好坏,任意抽取每种棉花各10棵,统计它们结桃数的情况如下:
甲种棉花。
84798184858283868789。
乙种棉花。
85848979819179768284。
你认为两种棉花哪种结桃情况较好?
操作:让学生在各个的学习小组中讨论、解释、交流自己的发现.教师可以参与到某个或几个小组中倾听。在小组学习中讨论、交流发现另一个统计量极差(它有别于平均数、众数、中位数),极差反映了一组数据的离散程度。
发现1.甲种棉花结桃的最多数目为89,最少数目为79,其差为10;乙种棉花结桃的最多数目为91,最少数目为76,其差为15。
发现2.乙种棉花的结桃数据较甲种棉花的结桃更分散,分散的程度较大,说明棉花的结桃情况越不稳定。
通过以上发现可知:甲种棉花的结桃情况较乙种棉花好。
极差定义:一组数据的最大数据与最小数据的差叫这组数据的极差。
表达式:极差=最大值-最小值。
1.极差是刻画数据离散程度的最简单的统计量。
2.特点是计算简单。
3.极差是利用了一组数据两端的信息,但不能反映出中间数据的分散状况。
注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的`,要了解其他的统计量,在此为下一节的内容埋下伏笔。
1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是.
2、一组数据3、-1、0、2、x的极差是5,且x为自然数,则x=.
3、下列几个常见统计量中能够反映一组数据波动范围的是()。
a.平均数b.中位数c.众数d.极差。
1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是()。
a.0.4b.16c.0.2d.无法确定。
在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是()。
a.87b.83c.85d无法确定。
3、已知一组数据2.1、1.9、1.8、x、2.2的平均数为2,则极差是。
4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是。
5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施以优帮困计划,为此统计了上次测试各成员的成绩(单位:分)。
90、95、87、92、63、54、82、76、55、100、45、80。
计算这组数据的极差,这个极差说明什么问题?
将数据适当分组,做出频率分布表和频数分布直方图。
本节课我们主要学习了。
极差反映一组数据变化范围的大小。
2、极差=最大值-最小值。
3、极差在分析一组数据的离散程度时,仍有不足的一面。