函数教学(优质12篇)
通过总结,我们可以提高自己的思维能力和解决问题的能力。做好总结需要有相应的数据和事实作为依据,避免主观感觉和主观臆断。这些范文中还提出了一些进一步学习和提高的建议,为我们的学习和工作指明了方向。
函数教学篇一
从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
课后我找到了科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。
但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
教学反思是指教师以自己的教学过程为思考对象,对自己做出的教学行为、决策以及所产生的结果进行审视。下面是一篇初中数学教学反思之《二次函数应用》的复习反思,欢迎阅读!
在期末复习期间,我们在区教研室和学校领导的指导下,通过“初备——交流——复备——再交流”,完成了《二次函数应用》的复习。通过本次活动,使我受益匪浅。
一、集体智慧胜于个人智慧。备课期间大家各显神通,献计献策。
二、备学生要胜于备教材。学生是学习的主体,老师是学习的主导。教师要因人而异,因材施教,方能取得较好的课堂效果。
三、化难为易,化繁为简。教师在课堂上应该起到把握重点,分解难点的作用。因此,备课时将问题设置成问题串,为学生搭建解决问题的台阶。
四、勤于思考,善于总结。在大量的习题中,在众多的方法下,指导学生梳理知识,归纳题型,提炼方法,总结规律。以提高学生的分析问题解决问题的能力。
函数教学篇二
函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的.数学学习过程。
其重要性主要体现在:。
1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。
2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。
3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。
函数教学篇三
方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。
是否有实根?为什么?当学生陷入困境时,教师再逐步提出下面的问题进行引导:
1.当遇到一个复杂的问题,我们一般应该怎么办?
以此来引导学生将复杂的问题简单化,寻找类似的简单问题的解决方法。
2.以前我们如何判断一个方程是否有实根,这对研究这个方程是否有帮助?
以此来引导学生从已有认知结构出发,将解决简单方程的方法迁移到不能求解的方程中去,学会从特殊到一般的思维方法。
3.除了用判别式可以判断一元二次方程根的情况,还有其他的方法吗?
以此来引导学生建立方程与函数的联系,渗透函数与方程的思想方法,并培养其从不同角度思考问题的习惯。
数形结合的思想方法几乎贯穿于“基本初等函数i”一章的始终,学生通过前面的学习,已基本形成数形结合的思想方法,所以本节教学应该以培养学生主动运用数形结合的思想方法去分析问题为目的。但是,在教学过程中却没有多留给学生主动运用数形结合思想方法的空间。
在建立方程的根与函数的零点的关系时,函数图象起到了关键的桥梁作用,充分体现了它与方程的根以及函数零点之间的数形结合的关系。但是,却没有留给学生足够的时间去主动搭建函数图象这一桥梁,而是由我作出函数图象,让学生回答方程的根与函数图象和x轴的交点有何关系,然后老师再给出方程的根、函数图象和x轴的交点、函数的零点之间的关系。这样的教学,虽然一定程度上也能体现数形结合的思想方法,但体现的思想层次却很低。在这种能够体现思想方法的关键地方,教师要舍得花时间,要让学生由方程自觉地联想到相应的'函数,主动地建立方程的根与函数图象间的关系,提升数形结合思想方法的层次,增强函数应用的意识。
方程的根与函数的零点是高中课程标准新增的内容,第一次教学就要取得成功的确不易。看来,像这些中学新增内容的教学,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善。
函数教学篇四
这节课安排在正比例函数的图象与一次函数的概念之后,内容包括:一次函数的图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是以后继学习“用函数的观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用,还是学生进一步学习“数形结合”这一数学思想的很好素材。
在教学过程中,考虑到学生在学习本节内容之前,已对正比例函数的图象和性质有了一定的认识,因此,首先给出一个正比例函数和一次函数,让学生通过对应描点法画出它们的图象,在对应描点这一活动过程中,让学生体验几组对应点的位置变化,感悟一次函数图象的'形状以及与正比例函数图象的位置关系,在此基础上归纳得出“一次函数的图象是一条直线”这一事实,紧接着根据这个事实,让学生利用两个点画出一次函数的图象。对于一次函数性质的教学,着眼于一次项项数k的变化设计了四个一次函数,让学生先画出它们的图象,再观察相应图象的变化趋势,并类比正比例函数的性质,进而归纳出一次函数的性质。通过这种注重过程和体验的再设计、凸显本节课的教学重点,最后在练习和作业中,设计的几个习题,加深学生对本节知识的理解和应用。
这节课立足于学生的已有知识,把教学重点分解为一系列富有探究性的问题,让学生在解决问题的过程中,经历知识的发生、发展、形成的过程,把知识的发现权交给学生,让他们在获取知识的过程,体验成功的喜悦,真正体现学生是学习的主人,而老师只是学习的参与者、合作者、引导者,在教学活动中,老师重点是关注学生的实践能力,探究精神和交流合作意识,强调过程性评价。
函数教学篇五
在教学中,通过预习提纲(课前用)、学卷(课堂用)、小测(课后用)来辅助教学。预习题纲中涉及到的一次函数关系式,学生能够比较容易发现规律。这些关系式的得出都是结合生活实际设计的,使学生能够从中感受一次函数与生活的联系。这一块的内容不需要讲解很多,把关系式一摆出,学生很容易发现规律,得出一次函数的形式,这种发现规律主动接受知识比老师生硬的教使学生被动掌握知识,效果要好很多。小测是在课堂内容完成后,马上进行的检测,主要是考察当节课学生对基础知识掌握的情况,难度不会很大,也便于学生发现当节课的问题。
新课标提倡我们,要注重教材的分析和教学内容的优化整合。遵循学生认知规律,选用最恰当最有效的教学方法,高质量完成教学任务。使用过的华东师大版和新人教版都是把正比例函数和一次函数的概念、图象分开讲解的,本身由于正比例函数就是特殊的一次函数,存在着必然着的联系和区别,所以把这两块的内容进行了整合设计。
一次函数的性质探索是通过四个活动来完成,让学生参与进来,让他们自己发现问题和规律,并根据学卷和老师的引导进行总结。
1、一次函数的概念。通过候鸟的飞行路程和时间的关系以及登山的高度与温度的关系,再加上预习题纲设计了八道与生活联系密切的小题,共十个函数关系式,让学生可以轻松认识一次函数(包括正比例函数)关系式,引导学生去发现这些关系式形式上的规律,比较快地总结出了y=kx+b的形式。形式容易记忆,关键是学生对两个常数k和b的理解,马上配以判断一次函数的练习来进行巩固,。教学中特别地强调了正比例函数就是特殊的一次函数的这种关系。同时设计:当m为何值时,函数是正比例函数,这种题型加深学生对关系式中k0的认识。
2、一次函数的画法。之前学过的画函数图象都是采用描点法,并且要取好多点,那在认识了一次函数的形式后,有没有更简便的方法来画图象呢?我首先展示了上两节课学生在同一平面直角坐标系中画出的函数和函数的图象。
在引入画一次函数的两点法之前,设计了三个小问题让学生们行星地思考:
(3)回忆课时3学卷里的函数y=x+,y=2x、y=2x—。
1、y=2x+1的图象,它们都是___线。
用这三个小问题做铺垫,学生们很快完成下面填空:一次函数的图象形状是一条___线。___点确定一条直线,所以以后画一次函数图象时只需要取___点,这种方法叫___点法。
两点法提出来后,再引导学生进行新的思考:既然是取两点就可以画一次函数图象,那么如何取点自然成了画直线的关键?这时学生不由自主地就会讲出取x=0,此时马上肯定了学生想的非常好,同时提醒取另外一个x值。这个值学生们讲的就比较多,什么都有,甚至有的为了好玩,取好大值的。进行了引导后,布置学生在同一平面直角坐标系中画函数y=—6x和y=—6x+6。并引导学生结合这两条直线分析正比例函数和一次函数的图象上的区别与联系。
3、一次函数的性质。在活动前,设计了一个水银温度计里水银泡随着温度的变化而变化的情境,让学生充分感受这种函数的变化就在身边。并渗透数形结合思想,来研究其性质。
一节课学生的学习效果,关键看教师的教学设计是否符合学生的求知需要。本节课的优点在于学生在教师的引导下进行的思考,对掌握知识有辅助作用,而且教学设计符合大部分学生需要,学生课堂参与积极性比较高,学生在求知过程中信心倍增。但是否会解决问题,是否学生真的都进行了彻底的思考,可能会影响到学习效果。就像这节课,学生在讨论性质时,场面很热闹,在总结时又好像都没问题,但在解决问题时(小测和作业中的反映)非常容易出错。针对这一现象,我思考这节课的教学,特别是性质探索这一环节,如果把前三个活动借助几何画板来展示,加入平移、变换,还可以随机画一次函数,根据显示的k和b的取值(符号)来验证或体会性质,都很直接,更形象的东西学生接受起来比抽象的容易一些。
立足于“一次函数的概念、图象和性质”这一教学重点,从创设情境、提出问题,到新课学习、规律发现,再到例题,小结,练习,老师不断地引导,学生不断地思考、讨论,在这个过程中,认识了一次函数的形式,会用两点法画一次函数的图象,并且能够结合图象获取相关信息(得出性质)。从整节课的效果上看,学生们学的还是很有信心,也很积极主动,学习气氛也很浓烈。这节课知识点比较多,但都算基础,关键是教学设计能够牵着学生主动去探索知识。
成功之一:《新课程标准》十分强调数学学习与现实生活的联系,要求数学教学必须从学生熟悉的生活情境和感兴趣的事实出发,为他们提供观察和操作机会,使他们有更多的机会从周围熟悉的事物中学习和理解数学,体会到数学就在身边,感受到数学的趣味和作用。这节课在学习一次函数概念时,举出的与生活联系密切的八个函数函数(体现在预习题纲中,课前已完成)起到了很大帮助。学生很快地发现了一次函数形式的规律,把抽象问题具体化,激发学生学习一次函数的兴趣,加深学生对一次函数关系式的印象,正确的把握正比例函数和一次函数的关系,为学习、研究一次函数奠定了基础。
成功之二:引导学生对画一次函数图象的两点法的思考,画图的过程已经让部分学生提前感受了一次函数的性质。
成功之三:在探索一次函数性质时设计的四个活动,循序渐进,让学生充分地参与了讨论和总结。
每节课都有它独特的亮点,当然也会有它的不足和遗憾之处,只有不断地反思,不断地总结和思考,才会使自己的实践能力和教学艺术在这个过程中得到提升,使自己在教学中取得进步。
遗憾之一:学生在用两点法画直线取点时,对x取0比较感兴趣,虽然在教学设计时不主张硬性规定学生如何取点,但应该引导一下学生对y取0的思考,或者在画图时,把不同学生取的不同点展示一下,这样也好为求直线与两坐标轴的交点打下基础,就不用在后面补充的练习中再浪费时间去进行说明。在这里,忽视了这样一个非常重要的体会交点的机会。
遗憾之二:在用两点法画完图后,因为学生在取点时表现的比较积极,可以说已经进入了一个学习高潮,借此,应该给出二至三道关于性质的题让学生根据画的图去判断,从而去体会图象的意义和作用,然后再进入学习探索性质的环节。
函数教学篇六
初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。
初中阶段所学的函数包括一次函数,反比例函数,二次函数。他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解。
在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好。根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌。我在教学中重点是引导学生怎样去观察图象,从图象得出其性质。如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好。反比例函数,二次函数性质也掌握的较快。
总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识。
函数教学篇七
函数的奇偶性是函数的主要性质之一,由于函数的研究对于高一的学生来说与集合、不等式等章节的研究风格完全不同,特别是概念的学习,学生在理解、接受上会有不适应与困惑。对于上述问题,我让学生通过图片和函数图象直观获得对称性的认识,然后利用表格探究数量变化特征,通过代数运算,来验证发现的数量特征,最后在这个基础上建立奇偶函数的概念,取得了较好的教学效果。
本节课在课前准备时我刻意注意了以下几点:
在课堂教学中,合理引入抽象的概念,激发学生学习的兴趣,帮助学生理解教材内容、加深印象从而提高教学质量。在本次教学中,通过图片,直观自然地引出了函数图像的对称性,从而将本次教学中的难点(奇偶函数的图像特征)引入了课堂。这样的概念引入会使学生对奇偶函数的性质产生兴趣,能迅速地把学生的注意力吸引到教学活动中;同时,及时将活动抽象到数学层面上,避免陷入形式化的泥潭。
在教学过程中,让学生自已归纳、总结奇偶函数的图像特性,最后得出函数图像对称性质。我采用的方式是:先给出几个特殊函数的图像,如f(x)=x2和f(x)=1/x,让学生通过图像直观获得函数图像对称性的认识,然后利用表格探究数量变化特征,并通过代数验证数量特征对定义域中的任意自变量都成立,最后在这个基础上建立奇偶函数的概念。这一过程正体现了抽象概念的学习要从具体例证开始,抽象概念需要具体例证的支持的教学理念。这一过程也切实改进学生的学习方式,引导学生经历观察、实验、猜想、推理、交流、反思最后掌握知识过程。在此期间活动的主体是学生,老师是组织者、参与者、引导者,活动中,更多的是突出学生的主体作用,让学生自己经历问题的分析解决过程。
现代信息技术的`广泛应用对数学课程内容的设置、数学教学方式等方面产生深刻的影响。因此,在课堂上根据教学内容选择恰当的信息技术工具,来呈现以往教学中难以呈现的课程内容。本节课我充分利用ppt课件的作图规范、直观、便于找到自变量互为相反数时函数值的等量关系这一特点,由具体到抽象,得出函数奇偶性的一般性的结论。教学课件的运用,活跃了课堂氛围,增加了学生的学习兴趣,使得教学的知识变得更为生动与直观。
在本节课的教学中我还要注意到以下几个方面的问题:
在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,可以多采用学生板演让全班学生纠正等方式,更好的考察学生掌握情况,帮助一些学习有困难的学生改正常见的错误。
在数学教学中我们都要对例题的解题过程进行讲解,并书写解题过程,以便让学生更好的模仿。在本节课例题的解题过程要认真板书,并保证字迹清楚,便于学生仿照。
在授课过程中要注意到说话语速、语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
一节课结束后,我们都应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,将这些作一总结,经过长期的积累,我们必将获得一笔宝贵的教学财富。
函数教学篇八
从《函数》这节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
课后我找到了科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的.答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。
但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。
通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
函数教学篇九
《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。下面是我对本节课的教学反思:
上课前认真备课,多次请教了指导教师孙久志老师的意见与建议,在他的指导下,我对新课标和新教材有了较为整体的把握和认识,将知识系统化,注意知识前后的联系,形成了知识框架,了解了学生的现状和认知结构,做到了因材施教。
这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。
本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式12y=ax'type="#_x0000_t75"以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a0且a12鈮?'type="#_x0000_t75"的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。
本节课的另一个成功之处就是采用“引导启发探讨”式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。
本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。
对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。
在让学生归纳指数函数的图象时,学生总结了a1与01的代表就是我们画出的12y=2x涓?/m:tm:rpry=3x'type="#_x0000_t75"的图像,而0y=(13)x'type="#_x0000_t75"的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
函数教学篇十
进入初三,不止学生因为门门都是主课而紧张,各科老师也为抓自己学科学习时间而紧张起来。
一开学就讲二次函数,这一章是初中代数的重要内容之一,河南中招压轴题少不了它的影子,它可以和一元二次方程、一次函数、反比例函数、相似三角形等初中阶段较难知识联系出题,而且它涉及的应用题在解的过程中对计算要求也比较高。所以学好这一章能提高学生数形结合的解题能力,同时也为以后的综合题打好基础。
学生数学思维的形成不是一天就能练就的,需要教师在平时教学时渗透其中。在讲二次函数的第一节课时,我类比学生熟悉的一次函数的学习方法,让学生既复习了已学知识,又对新知识有了宏观的了解。
在学习函数性质时,我特别强调画图,要求每个学生都必须把图象画对、画准。在此基础上,每节课都强调抛物线的四条性质:开口方向、顶点坐标、对称轴、增减性。并告诉学生,虽然二次函数包括的内容很多,但概括起来就是三个知识点:1.图象是一条抛物线;2.开口方向、顶点坐标、对称轴、最值(最值就是顶点纵坐标);3.增减性,分开后向上和向下两种情况讨论。而且这三点又都能从函数图象上看出来,所以,我反复强调要想学好二次函数性质关键是画图,而利用图象来研究、分析函数性质的过程就是数形结合。
在学习二次函数应用时,我又要求学生在解题时必须画出草图,看图分析求出最值,而不是死记硬背性质来写题。使学生体会到数形结合研究数学问题的简便性和重要性。
在这一章的又一重点和难点:求二次函数解析式的教学上,我给学生总结了用待定系数法求解析式的几点技巧,对于常见的三种解析式:一般式、顶点式、交点式,不论哪种形式,都涉及到三个常数的确定,即需要三个条件来求,根据已知条件来设定函数的解析式:已知图象经过任意三个点,用一般式;已知图象顶点坐标,应用顶点式;已知图象与x轴交点,则用两点式较为简单。同时,我们还可以根据图象的位置来选择适当的形式:已知图象与y轴交点坐标的,设一般式,过程简单;已知图象关于y轴对称的,设顶点式或交点式,计算简便。
函数教学篇十一
1.关于三角函数的教学,应注意以下问题:
(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。
(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。
(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。
2.关于平面向量的教学,应注意以下问题:
(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。
(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。
(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。
3.三角恒等变换的教学,应注意以下问题:
(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。
(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。
(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。
函数教学篇十二
函数教学是初中数学的重点和难点。如何提升对函数教学的整体性和连贯性的认识呢?我认为必须从以下几方面进行把握。
一,充分理解概念。(1)在某一变化过程中有2个变量。(不能是1个、3个、4个…变量)。(2)其中一个变量在某一范围内取值(注意自变量取值范围)。(3)另一个变量总有唯一确定的值和它对应(对应值不能是2、3、4…个)。为了理解函数概念,课本上举的是正例,我们再举一些反例更能加以说明,(1)矩形面积s与长x、宽y的关系s=xy中有几个变量.(2)匀速运动中的路程s和时间t的关系s=60t中,t能否取负值.(3)如图中的x每取一个值,y的值是否有唯一值和x对应.
二,充分运用数形结合的思想方法。每讲一种函数,都要求学生在脑海中出现它的图象,从而想到它的性质。
三,注重比较学习法,通过比较,加深记忆。在讲一次函数时,及时拿出前面学过的正比例函数解析式和图象进行比较,找出它们的异、同点。同样在讲反比例函数和二次函数时,也要及时拿出前面学过的几种函数进行比较。
四,注重一次函数与二元一次方程、一元一次不等式的关系,二次函数与一元二次方程的关系。要求学生能用图象法解方程(或不等式),能用方程(组)求函数图象与坐标轴的交点等。
五,注重函数与生活实际的有机结合。如很多生活中的一次函数图象不是直线,而是线段或射线,很多生活中的反比例、二次函数的图象也只是其中的一个分支或一部分等。