不等式的证明例题(5篇)
文件格式:DOCX
时间:2023-03-23 00:00:00    小编:半夏先生在澳洲

不等式的证明例题(5篇)

小编:半夏先生在澳洲

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

不等式的证明例题篇一

=(1/a+2/b+4/c)*(a+b+c)

展开,得

=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4

=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b

基本不等式,得

>=19>=18用柯西不等式:(a+b+c)(1/a+2/b+4/c)≥(1+√2+2)^2=(3+√2)^2

=11+6√2≥18

楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z

则原不等式等价于:

x^2+y^2+z^2>=xy+yz+zx

<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)

<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0

<=>(x-y)^2+(y-z)^2+(z-x)^2>=0

含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7,-1-7x-7,x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是,值域是,函数y=arccosx的定义域是,值域是,函数y=arctgx的定义域是r,值域是.,函数y=arcctgx的定义域是r,值域是(0,π).直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.(1/a+2/b+4/c)*1

=(1/a+2/b+4/c)*(a+b+c)

展开,得

=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4

=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b

基本不等式,得

>=19>=18用柯西不等式:(a+b+c)(1/a+2/b+4/c)≥(1+√2+2)^2=(3+√2)^2

=11+6√2≥18

楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z

则原不等式等价于:

x^2+y^2+z^2>=xy+yz+zx

<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)

<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0

<=>(x-y)^2+(y-z)^2+(z-x)^2>=0

含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7,-1-7x-7,x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是,值域是,函数y=arccosx的定义域是,值域是,函数y=arctgx的定义域是r,值域是.,函数y=arcctgx的定义域是r,值域是(0,π).直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.

不等式的证明例题篇二

§14不等式的证明

不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型.证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:abab0,abab0.这是不等式的定义,也是比较法的依据.对一个不等式进行变形的性质:

(1)abba(对称性)

(2)abacbc(加法保序性)

(3)ab,c0acbc;ab,c0acbc.(4)ab0anbn,nanb(nn*).对两个以上不等式进行运算的性质.(1)ab,bcac(传递性).这是放缩法的依据.(2)ab,cdacbd.(3)ab,cdacbd.(4)ab0,dc0,含绝对值不等式的性质:

(1)|x|a(a0)x2a2axa.(2)|x|a(a0)x2a2xa或xa.(3)||a||b|||ab||a||b|(三角不等式).(4)|a1a2an||a1||a2||an|.ab,ad 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.例题讲解 1.a,b,c0,求证:ab(ab)bc(bc)ca(ca)6abc.abc32.a,b,c0,求证:abc(abc)

abc.a2b2b2c2c2a2a3b3c3.3.:a,b,cr,求证abc2c2a2bbccaab

4.设a1,a2,,ann*,且各不相同,求证:1

12131aa3ana12..n2232n25.利用基本不等式证明a2b2c2abbcca.446.已知ab1,a,b0,求证:ab1.8

7.利用排序不等式证明gnan

8.证明:对于任意正整数r,有(1

1n1n1)(1).nn11119.n为正整数,证明:n[(1n)1]1n(n1)nn1.23n

1n 课后练习

1.选择题

(1)方程x-y=105的正整数解有().(a)一组(b)二组

(c)三组

(d)四组

(2)在0,1,2,„,50这51个整数中,能同时被2,3,4整除的有().(a)3个(b)4个

(c)5个

(d)6个 2.填空题

(1)的个位数分别为_________及_________.4

5422(2)满足不________.等式10≢a≢10的整数a的个数是x×10+1,则x的值(3)已知整数y被7除余数为5,那么y被7除时余数为________.(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.3.求三个正整数x、y、z满足

23.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.课后练习答案

1.d.c.2.(1)9及1.(2)9.(3)4.(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.4.可仿例2解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法...

略解:a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次22数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴8888333

3222

2≡8(mod37).2222

27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|n.22

3+7777

3333

≡(8+7)(mod37),而

237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数.222

229.易知p≠q,不妨设p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,则m>n由此可得不定方程

例题答案:

1.证明:ab(ab)bc(bc)ca(ca)6abc

a(b2c22bc)b(a2c22ac)c(a2b22ab)

a(bc)2b(ca)2c(ab)2

0

ab(ab)bc(bc)ca(ca)6ab.c

评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明a2b2c2abbcca时,可将a2b2

1(abbcca)配方为[(ab)2(bc)2(ca)2],亦可利用a2b22ab,2b2c22bc,c2a22ca,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于a,b,c对称,不妨abc,则ab,bc,acr,且

ab,,c(abc)abc3a2abc3b2bac3c2cab3aab3aac3bba3bbc3cca3ccb3

ab3a()bb()cbc3a()cac31.评述:(1)证明对称不等式时,不妨假定n个字母的大小顺序,可方便解题.(2)本题可作如下推广:若ai0(i1,2,,n),则a11a22anaaan(a1a2an)a1a2ann.(3)本题还可用其他方法得证。因aabbabba,同理bbccbccb,ccaacaac,另aabbccaabbcc,4式相乘即得证.(4)设abc0,则lgalgblgc.例3等价于algablgbalgbblga,类似例4可证algablgbclgcalgbblgcclgaalgcblgbclga.事实上,一般地有排序不等式(排序原理): 设有两个有序数组a1a2an,b1b2bn,则a1b1a2b2anbn(顺序和)

a1bj1a2bj2anbjn(乱序和)a1bna1bn1anb1(逆序和)

其中j1,j2,,jn是1,2,,n的任一排列.当且仅当a1a2an或b1b2bn时等号成立.排序不等式应用较为广泛(其证明略),它的应用技巧是将不等式两边转化为两个有序数组的积的形式.如a,b,cr时,a3b3c3a2bb2cc2aa2ab2bc2c

a2b2c2111111abbcca;abca2b2c2a2b2c2bcabcaabc222.3.思路分析:中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.111111,则a2b2c2(乱序和)cbacab111111a2b2c2(逆序和),同理a2b2c2(乱序和)abccab111a2b2c2(逆序和)两式相加再除以2,即得原式中第一个不等式.再考虑数abc111333组abc及,

222不妨设abc,则abc,4.分析:不等式右边各项

ai1a;可理解为两数之积,尝试用排序不等式.i22ii设b1,b2,,bn是a1,a2,,an的重新排列,满足b1b2bn,又1111.22223nanbna2a3b2b3.由于b1,b2,bn是互不相同的正整数,b122222n2323nb3bnb11故b11,b22,,bnn.从而b12,原式得证.12222n23n所以a1评述:排序不等式应用广泛,例如可证我们熟悉的基本不等式,a2b2abba,a3b3c3a2bb2cc2aaabbbcccaabcbaccab3abc.5.思路分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方..法.a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次数及22系数是相等的.如上式左右两边次数均为2,系数和为1.6.思路分析:不等式左边是a、b的4次式,右边为常数式呢.44要证ab1,如何也转化为a、b的4次811,即证a4b4(ab)4.8833评述:(1)本题方法具有一定的普遍性.如已知x1x2x31,xi0,求证:x1 x211133求证:x1x2x2x3 x3.右侧的可理解为(x1x2x3).再如已知x1x2x30,3332+x3x10,此处可以把0理解为(x1x2x3),当然本题另有简使证法.38(2)基本不等式实际上是均值不等式的特例.(一般地,对于n个正数a1,a2,an)

调和平均hnn111a1a2an 几何平均gnna1a2an 算术平均ana1a2an

n22a12a2an平方平均qn

2这四个平均值有以下关系:hngnanqn,其中等号当且仅当a1a2an时成立.7.证明: 令biai,(i1,2,,n)则b1b2bn1,故可取x1,x2,xn0,使得 gnb1

xxx1x,b22,,bn1n1,bnn由排序不等式有: x2x3xnx1b1b2bn

=xx1x2n(乱序和)x2x3x1111x2xn(逆序和)x1x2xn x1

=n,aaa2ana1a2nn,即1n111,,各数利用算术平均大于等于几何平均即可得,gnan.a1a2an 评述:对8.分析:原不等式等价于n1(1)1平均,而右边为其算术平均.n11nn1,故可设法使其左边转化为n个数的几何n111111n21(1)n(1)(1)1(1)(1)11.n1nnnnnn1n1n个n1 评述:(1)利用均值不等式证明不等式的关键是通过分拆和转化,使其两边与均值不等式形式相近.类似可证(11n11n2)(1).nn1(2)本题亦可通过逐项展开并比较对应项的大小而获证,但较繁.9.证明:先证左边不等式

111(1n)123n1111n123n (1n)n

n111(11)(1)(1)(1)123n (1n)nn34n1223nn1n(*)

nn[(1n)1]121n1n111123n

n 34n123nn234n1nn1.n23n (*)式成立,故原左边不等式成立.其次证右边不等式

1111n(n1)nn1

23n1 n1n1n(1111111)(1)(1)(1)23nn1123n n1nn112n1123n

(**) n1nn1

(**)式恰符合均值不等式,故原不等式右边不等号成立.

不等式的证明例题篇三

不等式证明

1.比较法:

比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法

(1)作差比较:

①理论依据a-b>0

a>b;a-b=0

a=b;a-b<0

a

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)作商法:①要证a>b(b>0),只要证

;要证a0),只要证②证明步骤:作商→变形→判断与1的关系 常用变形方法:一是配方法,二是分解因式

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
不等式的证明例题(5篇) 文件夹
复制