人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
学生已有的经验有:多位数除以一位数的口算方法。这些方法是帮助学生学习笔算除法的基础。因此,在教学中,我注意激活学生已有的经验,唤起学生对旧知识的回忆,将它灵活运用在解决问题这样一个新的情境中。在教学中,我是这样做的:
以前的老教材中总会出现一些计算法则之类的话语。而现在新教材却没有出现。那么是不是现在新教材学生就不需要在其计算过程中注意计算法则了呢?带着这些疑问,我请教了一些老教师,他们告诉我计算法则不出现在课本上是防止学生死用法则,套用法则,而没有去真正理解算理。
有了以上的指引,在教学“一位数除两位数的笔算除法”过程中,我努力做到让学生在实践活动中去理解算理。在教学42÷2=?时,我设计了让学生分小棒的实践活动。同时为了防止学生上课玩小棒,分散注意力,我安排注意力集中的同学相互监督。学生在以前的加法、减法、乘法中,习惯了从个位算起。而除数是一位数的笔算,打破了学生原来的计算顺序和习惯,学生会很不习惯,也很难理解。在这堂课上,我抱着从实践出发的原则,让学生复习口算的方法,再按口算的方法来分小棒,循序渐进地发现算理,理解从高位除起的算理,为今后学生学习一位数除三位数、一位数除多位数打下坚实的基础。相信凭着这样的教学理念,一定会让数学课更生动有趣、更容易让学生掌握和理解的。
在具体教学的过程以及与学生的互动过程中我发现如下需要改进的地方:
1.语言亲和力不够,表扬的语言不够丰富。
2.自我展示环节,对学生表现力的激发还不够。
3.进一步加强指导学生4+3课程模式中讨论环节的讨论方法,各个环节时间分配略显不足。
通过本课的学习,大部分学生对知识的掌握比较牢固,但个别同学对笔算除法的算理掌握的还不够。在今后的教学中,对每一个环节的把握,我也要力争做到更精准。
教学背景:
“一位数除两位数”的笔算除法,要求学生理解和掌握运算顺序与商的定位方法及笔算竖式书写格式。很多教师在第一次教学这一内容时,都认为非常简单,实际上学生很难理解:为什么要从高位除起?除后十位上余下的数为什么要和个位上的数合在一起?因为教师觉得这一内容简单,导致第一次执教这一课时很少有教师成功解决这些难点。我第一次执教失败后,第二次执教这一课时,采取操作、探究、小组合作的教学形式,取得了较好效果。
教学实录:
创设情境,尝试体验。
教师出示10支一捆的笔,共9捆,另有6支散装笔。
师:老师现在有96支笔,要平均分给3人,每人可得几支?可以怎样分?
小组操作讨论后,学生提出各种解决问题的方案。
生1:一支一支分,每人可得32支。
生2:两支两支分比一支一支分方便,每人得32支。
生3:先一捆一捆分,每人分得3捆,然后再把剩下的6支笔平均分成3份,每人得2支,所以每人一共得32支笔。
……
学生纷纷议论着,认为这种分法最简单,很快就能将笔分完。
师:那么,你能否用这种最简单的方法列竖式计算呢?会的同学可以自己列式,不会的可以离开座位请教别人。(有十几个学生离开位置,请教别人)
学生尝试,教师巡视指导,然后集体交流。
师:哪一种才是最简便、正确的计算方法?为什么?
学生一致得出是第二种方法。
生4:我先把9捆笔平均分成3份,即9÷3=3(捆),然后再分另外的6支,实际上是分两次,因此书写上有两层。
师:真聪明!
师(指着竖式):十位上的“9”先除以3,商3,3为什么写在十位上?个位上的“6”除以3,商2为什么写在个位上?
师:古代的人真聪明,发明了列竖式计算除法,你们能理解吗?
生5:我知道为什么要这样列竖式,因为竖式中的除号是工厂的“厂”字。具体意思表示......师:你真会动脑筋!
师:那么,如果现在老师想把96支笔平均分给2个人,应该怎样分呢?每人自己动手,找出最简单分成两份的方法,然后自己列竖式计算。不会的同学可以离开位置和别人讨论。
师:哪个是正确的?哪个是错误的?为什么?
(生答略)
师:竖式中9-8=1是什么意思?为什么剩下的1捆要和零散的6支合在一起?竖式计算的书写格式是否正确?……
反思:
数学因操作而生动,因现实而丰富。
操作本质上是学生的再创造过程。在这一过程中,学生不仅自主学到了相关的知识,掌握了一些方法,更重要的是学生在操作的过程中获得了一种深刻的体验。
为了给学生提供一次实际操作的机会,教师设计了“将96支笔平均分成3份”这一教学情境,使学生懂得除法竖式的运算顺序与生活是有联系的,它从高位起有序地进行是为了计算的方便。学生会因为数学的现实、有趣而喜欢上数学,从而产生学习的兴趣。因此,作为数学教师就要尽可能从学生的生活挖掘和寻求可以利用的教学资源,让他们感到数学是现实的、有用的,从而使数学教学更加丰富、鲜活。
教学反思:
这节课的内容是用一位数除商两位数的延伸,是以一位数除两位数为基础的,主要是解决被除数的最高位不够商1时,要用除数去除被除数的前两位数的问题。
先复习一位数除商两位数笔算除法,为学习新知识起到孕伏作用。接着引导学生以小组探讨的方式进行学习,加强新旧知识的联系,培养学生迁移能力。在总结法则时,先让学生讨论汇报小结法则,有利于培养学生的语言表达能力和对知识的构建能力。练习的设计突出有针对性的对容错的问题进行训练。
教学调整:
在这之前,学生已学习了两位数除以一位数的笔算除法的计算方法,在此基础上再让学生来学习三位数除以一位数的笔算除法。但教材编写进度太快,直接让学生学习被除数百位不够除,怎样处理的笔算情况,学生有困难。因此,在本课教学中,我将三位数除以一位数的笔算除法划分为两课时进行,第一课时让学生来探究被除数百位够除的笔算方法,在此基础上再让学生来探究被除数百位不够除的笔算方法。
从学生的起点出发重组教材
教材中的安排是直接出示三位数除以一位数(白位不够除)的笔算,教学讲究循序渐进,还不会爬,如何会跑?所以这里我对教材进行了重组,在此课之前先出示684除以2让学生尝试笔算,以这一题为切入口让学生理解三位数除以一位数的笔算顺序,然后让学生尝试百位有余数的笔算,最后让学生尝试百位十位个位都有余数的笔算,这样的处理将难点进行逐一分解,分小步子进行教学,学生容易接受,而且掌握得比较
扎实。教材是重要的教学资源,但并非“教条”,在教学中,我们应该结合学生的实际,合理地,分析教材,改造教材使其成为真正有用的课程资源。