不等式基本性质教学设计(五篇)
文件格式:DOCX
时间:2023-03-01 00:00:00    小编:国企面试钱老师

不等式基本性质教学设计(五篇)

小编:国企面试钱老师

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

不等式基本性质教学设计篇一

教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。

教学目标:了解不等式概念,理解不等式的解和解集。教学重难点:不等式及解集概念的理解。教学过程: 一:引出新知。

现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。

1、汽车在12:00之前驶过a地的意思是什么? 从时间上看,汽车要在12:00之前驶过a地,则 以这个速度行驶50 km所用的时间不到。

从路程上看,汽车要在12:00之前驶过a地,则以这个速度行驶的路程要超过50 km。

(2)类比方程的解,什么叫不等式的解?

三、运用新知。 例1 请用不等式表示:

(1)是负数;

(2)与5的和小于-7;

(3)的一半大于3.例2 直接说出不等式的解集,并在数轴上表

示出来.四、归纳总结 (1)什么叫不等式?

五、布置作业

教科书习题9.1 第1、2、3题。

不等式基本性质教学设计篇二

10141510244 数学与应用数学 钟林

课题:人教a版必修5第3章4节,基本不等式

【教学目标】

1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。

2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。

2值中的作用,提升解决问题的能力,体会方法与策略。

【重点难点】

重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。

2难点:在几何背景下抽象出基本不等式,并理解基本不等式。

【教学设计】

(一)问题导入

欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。

探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形abcd中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。

22ab那么正方形的边长为。

于是,4个直角三角形的面积之和s12ab。正方形的面积s2a2b2。由图可知s2s1,即a2b22ab。

所以a2b22ab。

探究二:如下图所示的梯形中,ef是梯形abcd的中位线,梯形abgh相似于梯 形ghdc。

梯形abcd的上底是a,下底是b。让同学们自主研究gh和ef的大小关系。

agaba,gdghb又因为ab,所以aggd,即agae,ab。2显然,当ab逐渐趋近cd的时候,gh也逐渐向ef靠近,当ab=cd的时候,即abcd是矩形的时候,gh与ef重合。

ab即,当且仅当ab时,ab。

2ab所以,ab,当且仅当ab时,等号成立。

2所以ghef,即ab

(二)概念深入

根据上述两个几何背景,初步形成不等式结论:

若a,br,则a2b22ab。(当且仅当a=b时,等号成立)

当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。

作法二(分析法):

要证明abab,2只需证明ab2ab,即证ab-2ab0,即为a-b20,该式显然成立,所以,当ab时取等号。

于是有这样的结论:

作法三(几何法):

2故再次证明:

aba0,b0,ab,当且仅当a=b时,等号成立。

2ab也说明了ab的几何意义:半径不小于半弦。

2由于直角三角形cod中,直角边cd

(三)例题讲解

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)

s2(2)若xys(定值),则当且仅当xy时,xy有最大值。

4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)

1例2.求yx(x0)的值域。

x1变式1.若x2,求x的最小值.

x图象,使学生再次感受数形结合的数学思想。

ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制

2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。

(四)归纳小结&课后作业 基本不等式:

若a,br,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立)2(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法。

作业:a组第4题,b组第1题,第2题

若a,br,则ab

不等式基本性质教学设计篇三

3.4.1基本不等式

教材分析

本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、归纳猜想、演绎推理、分析法证明等在各种不等式研究问题中有着广泛的应用;另外它在如“求面积一定,周长最小;周长一定,面积最大”等实际问题的计算中也经常涉及到。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。

课程目标分析

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

《基本不等式》教学设计的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

教学准备

多媒体课件、板书

教学过程

一、创设情景,提出问题;

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。

二、抽象归纳:

学生在黑板上板书。

如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。其中为a,b的几何平均数。

三、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述: 若a0,b0,则有ababab,当且仅当a=b时,ab。22[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

“当且仅当a=b时,等号成立”的含义是:

当a=b时,取等号,即ababab; 2仅当a=b时,取等号,即ababab。

24、探究基本不等式证明方法: [问] 如何证明基本不等式?

(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)

2 方法一:作差比较或由(ab)0展开证明。

方法二:分析法(完成课本填空)

① 2只要证ab

② 要证②,只要证ab

0

③ 要证③,只要证()20 ④

5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生abab(a,b0)2的几何解释,通过数形结合,赋予不等式探究不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。

dab

abab2abocab几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

四、探究归纳

下列命题中正确的是

①对于任意实数a,b,均有ab2ab;

π4π4(0,)的最小sinx4③当x(0,)时,有;所以函数ysinx在2sinx2sinx值为4。

以上命题均是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式abab成立的条件2a0,b0,及当且仅当ab时,等号成立。这些“陷阱”要让学生自己往里跳,然后自己再从中爬出来,完全放手让学生自主探究,老师指导,师生归纳总结。

结论:

若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。简记为:“一正、二定、三相等”。

五、领悟练习:

公式应用之一:

1(1)若x0,x的最小值为________,此时x_________.x(1)若a0,b0,且a+b=2,则ab的最大值为_______,此时a=_____,b=_____。

公式应用之二:(最优化问题)

六、反思总结,整合新知:

一个不等式:若a0,b0,则有abab。2ab,当且仅当a=b时,2ab两种思想:数形结合思想、归纳类比思想。

三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”

七、布置作业:p114习题1.2.3

不等式基本性质教学设计篇四

第11周 讨论时间:

学习目标

2、能够运用不等式的基本性质解决有关问题.重点难点

先学后教、讨论、探究、讲练结合 教具准备

问题:等式有哪些性质?(学生交流3-5分钟)学生回答等式的性质:

(1)a+2 ______2;

(2)a-1 ______ -1;

(3)3a______ 0;(4)a-1______0;

(5)因为a<0,所以a≠0,所以|a|>0.

当a<0时,3a<2a.(不等式基本性质3)

(学生在回答本题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

(六)教后反思

不等式基本性质教学设计篇五

一、教学设计理念:

这节课的目标定位分为三个层面:

本节课我设计了五个环节:

①变教学生学会知识为指导学生会学知识;

导入新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找??

【三维目标】:

一、知识与技能

二、过程与方法

本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。

三、情感、态度与价值观

1.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【三维目标】:

一、知识与技能

二、过程与方法

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

二、重点、难点解读

三、知识点精析

一、教学目标

1.知识与技能

探究基本不等式的证明过程,初步理解基本不等式

2.过程与方法

通过对基本不等式的不同角度的探究,渗透数形结合及转化的数学思想.

3.情感、态度与价值观:

三、教学资源 普通高中数学课程标准(实验)人教a版教材必修5

中学数学周刊2005年第10期 百度

四、教学方法与手段

启发学生探究,多媒体辅助教学

五、教学过程

(一)创设情境:

你能在这个图中找出一些相等关系或不等关系吗?

设计意图:创设问题情境,为问题的引出做铺垫

(二)新知探究: 图1

将风车抽象成图2

当直角三角形变为等腰直角三角形, 图2

即 时,正方形efgh缩为一个点,这时有

2.过程与方法:通过实例探究抽象基本不等式;

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

【教学难点】

基本不等式 等号成立条件

【教学过程】

1.课题导入

基本不等式 的几何背景:

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。

当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以,即

4.1)从几何图形的面积关系认识基本不等式

用分析法证明:

要证(1)

只要证 a+b(2)

要证(2),只要证 a+b-0(3)

要证(3),只要证(-)(4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第110页的《基本不等式》说课稿

一、教材分析

1、本节课的地位、作用和意义

基本不等式又称为均值不等式,选自普遍高中课程标准实验教科书(北京师范大学出版社出版)必修5,第3章第3节内容。学生在初中学习了完全平方公式、圆、初步认识了不等式,同时,在本章前面两节学习了比较大小、一元二次不等式等,这些给本节课提供了坚实的基础;基本不等式是后面基本不等式与最大(小)值的基础,在高中数学中有着比较重要的地位,在工业生产等有比较广的实际应用。

2、本节课的教学重点和难点

我通过解读新课标和分析教材,认为:

重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式以及其成立的条件也是教学重点。

突出重点的方法:我将采用①用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。

难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。

突破难点的方法:我将采用用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。

二、教学目标分析

1、知识与技能目标

(2)理解 的几何意义。

(3)能3分钟内写出基本不等式,并说明其成立的条件,准确率为95%

2、过程方法与能力目标

(1)探索并了解均值不等式的证明过程。

(2)体会均值不等式的证明方法。

3、情感、态度、价值观目标

(1)通过探索均值不等式的证明过程,培养探索、研究精神。

(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。“探究” 基本不等式的证明(1)

【三维目标】:

一、知识与技能

1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;

2.会用基本不等式解决简单的最大(小)值问题;

二、过程与方法

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【教学重点与难点】:

【学法与教学用具】:

2.教学用具:直角板、圆规、投影仪(多媒体教室)

【授课类型】:新授课

【课时安排】:1课时

【教学思路】:

一、创设情景,揭示课题

1.提问: 与 哪个大?

2.基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系)。

二、研探新知

重要不等式 :一般地,对于任意实数、,我们有,当且仅当 时,等号成立。

证明:

所以

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
不等式基本性质教学设计(五篇) 文件夹
复制