奥数题教案(3篇)
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么问题来了,教案应该怎么写?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
奥数题教案篇一
第一课时
教学目标:
1、掌握等差数列的定义,了解等差数列首项,末项和公差。
2、学会等差数列的简单求和。 教学重难点: 重点:公式的简单应用 难点:公式的理解 教学过程:
一、引入:世界上有一名著名的数学家叫高斯,他在很小的时候,老师给同学们出了一道数学题,让大家计算:1+2+3+4+5„+99+100=?
高斯仔细观察后,很快就计算出了结果。你们能猜出他是怎么计算的吗?
高斯解题过程:1+100=2+99=3+98=„=49+52=50+51=101,共有100÷2=50(个)。于是
1+2+3+4+5„+99+100 =(1+100)×100÷2 =5050
在这里,出现了一列数据。我们定义:按一定次序排列的一串数叫做数列。一个数列,如果从第二项开始,每一项减去它紧前边的一项,所得的差都相等,就叫做等差数列。
等差数列中的每一个数都叫做项,其中从左起第一项叫做首项,最后一项叫做末项,项的个数叫做项数。等差数列中相邻两项的差叫做公差。
例如:上面高斯求解的问题:首项是1,末项是100,项数是100,公差是1.我们得出高斯求解方法更多的是告诉我们一个求解等差数列的公式:
等差数列的和=(首项+末项)×项数÷2 例一:找出下列算式当中的首项,末项,项数和公差。(1)2,5,8,11,14,17,20,23(2)0,4,8,12,16,20,24,28(3)3,15,27,39,51,63 让学生上黑板演示结果。
(1)首项2,末项23,项数8,公差3(2)首项0,末项28,项数8,公差4(3)首项3,末项63,项数6,公差12 知道在等差数列中如何准备找出首项,末项,项数及公差以后,更重要的是熟练运用等差数列求和公式解决一般等差数列问题。例二:1+2+3+4+„+1998+1999.问:算式当中的首项,末项,项数分别是什么? 答:首项是1,末项是1999,项数是1999。解析:原式=(1+1999)×1999÷2
=2000×1999÷2
=1999000 小结:这是一道一般等差数列类型题,可以直接找到求解公式中需要的几个量。在计算过程中,当一个数乘另外一个数末尾有零时,先不看末尾的零,计算结束后,将零的相同个数添在积的末尾就行。练习:(1)1+2+3+4+„+250
(2)1+2+3+4+„+200
(3)1+3+5+7+„+97+99
第二课时教案
教学目标:
1、灵活运用等差数列公式求所有两位数的和。
2、能够运用等差数列的公式求解现实生活中的等差问题。 教学重难点: 公式的灵活应用。教学过程:
师:我们这节课利用高斯求和法计算所有两位数的和以及求解生活中的等差问题。
例一:求出所有两位数的和。
问:(1)两位数是从哪个数开始,又是到哪个数为止?
(2)两位数一共有多少个? 解:原式=(10+99)×90÷2
=109×90÷2
=4905 注意:解上面这道题需要我们动脑经的是先要准确的写出这个数列,找出数列的首项,末项和项数。在解题过程中会用到我们刚学过的三位数乘两位数的乘法,计算一定要小心。练习:(1)40+41+42+43+„+80+81
(2)10+11+12+„+49+50 例二:某单位的总务处主任,不小心把50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次? 问:(1)“最多”应该怎么样理解?(2)能否试着把数列写出来?
分析:这是一道解决实际问题的题,就要注意联系生活实际来思考。如开第一把锁时,试了49把钥匙都不对,那所剩下的一把肯定能打开,不用试50次,试49次就可以了。同样开第二把锁,最多试48次,依次类推,试完49把锁,剩下最后的一把不用试,一定能打开。这道题,开锁最多要试多少次,应该是一个,49+48+47+„+1+0的等差数列的和。它的首项是49,末项是0,项数是50,公差是1。根据等差数列求和公式就可以求出最多要试多少次。解:49+48+47+„+1+0 =(49+0)×50÷2 =1225 练习:(1)新年到了,10个好朋友聚会,每两个人之间要握一次手,他们一共要握多少次手?
(2)市里举行数学竞赛,参加数学竞赛的有16个小组,每两组之间都要赛一场,他们一共要进行多少场比赛? 难度上升题:(1)437-1-2-3-4„-29(2)2000-1-2-3-4„-60(3)(1+3+5+„+1997+1999)-(2+4+6+„+1996+1998)
(4)盒子里放有1只球,一位魔术师第一次从盒子里将这只球拿出,变成了3只球后放回盒子里,第二次从盒子里拿出2只球,将每只球各变成3只球后放回盒子里,如此继续下去,最后第10次从盒子里拿出10只球,将每只球各变成3只球后放回盒子里。这时盒子里共有多少只球?
解:(1)原式=437-(1+29)×29÷2
=2
(2)原式=2000-(1+60)×60÷2
=170(3)法一:
原式=(1+1999)×1000÷2-(2+1998)×999÷2
=1000000-999000
=1000 法二:
原式=1+(3-2)+(5-4)+„+(1999-1998)
=1+1+1+„+1(共1000个)=1000(4)解析:找出盒子球的变化规律,第一次增加2个球,第二次增加2×2个球,第三次增加2×3个球,如此下去,第10次增加10×2个球。即问题变为求解1+2+2×2+2×3+„+10×2(a)式的和。解:(a)式=1+2+4+6+„+20
=1+(2+20)×10÷2
=111(只)总结:今天学习的主要内容是等差数列求和,即简单高斯求和。学习高斯求和最关键的是要掌握等差数列的主要特征,明确高斯求和中的首项,末项,项数及公差。在求解现实生活中的等差问题,关键是找到等差数列,写出完整的数列,是求解实际问题的着手点。
奥数题教案篇二
一年级趣味趣味奥数活动总结
我们一年级段开展的趣味数学活动,是在数学课本知识的基础上,结合教学内容和学校开展的主题活动有目的地安排一些数学绘本活动内容,让学生学习。经过一年的趣味数学活动,现结合教学实践谈谈开展以来的一些收获:
一、趣味数学活动内容符合学生的年龄特点 数学一向以枯燥乏味、深奥难懂的面目示人,很多孩子因此丧失了学习数学的兴趣。一年级的孩子刚刚入学,如果我们单纯地从培养学生的数学思维入手,让他们学习数学的思考方法,势必把学生的数学兴趣扼杀在萌芽状态。由韩国的刘永昭先生主编的数学绘本以有趣的故事情境、浅显的内容呈现,讲述了数的起源、量的守恒、比较等一系列数学知识和数学思想方法。由于真正贴近了儿童,大大激发了孩子的学习兴趣,他们像听故事一样兴致勃勃地聆听着老师的讲解,时不时地发表着自己的意见,在兴趣盎然的讲解中学习着数学知识。
二、趣味数学活动过程符合学生的学习心理
1、课堂内——让孩子喜欢上数学
为了能让孩子喜欢上一周两节的趣味数学课,我通常会给孩子讲一些有趣的数学故事,边讲边提一些有趣的问题,如:在上“古时候的人是怎么数数的”一课时,当我问孩子“你猜一猜,古时候的人会怎么数数呢?”孩子提出的想法千奇百怪、当他们发现古人居然能借用身体上的鼻子、手臂计数时,都瞪大了双眼。然后,我们就学着古人的样子借助身体上的一些器官开始数数。我们还要求孩子晚上回家能把古人的数数方法教给家长,让家长也和我们一起体验数学的神奇。
在趣味数学活动课中,我们还经常与孩子们一起做一些数学游戏,如“正话反做”游戏、“数学手指操”游戏、“故事问答”游戏,甚至让学生根据绘本情境自己编一些小故事。孩子的参与热情被极大地激发了,课堂成了孩子向往的地方。
2、课堂外——让数学的触角延伸
数学与生活是紧密相连的,生活中很多地方都需要用到数学知识。从小培养这样意识,既能激发学生学习数学的兴趣,同时也能逐步培养学生运用数学的思想方法、思考问题的方式来解决生活中的问题,培养学生理性思维能力。课后,我经常要求学生回家找找“数学”,进行适度的课外延伸。如在学习了“数的产生”之后,让学生找找自己生活中要用到的数学。
三、激励促进学生全面发展
通过趣味数学兴趣活动,我对学生的学习,既关注他们对知识与技能的理解和掌握,更关注他们情感与态度的形成和发展,有利于树立学习数学的自信心,提高学习数学的兴趣,促进学生的发展。这样可以调动了学生的学习的积极性。具体表现在: 1.培养了学生对数学的兴趣。
参加兴趣小组的同学都有这么一个感受:就是以前做数学或许只是应付老师的作业,有时甚至是为了向爸爸妈妈交差。但通过学习他们意识到他们不再是被动的而是变成主动的学习,他们的学习能够自觉完成了,而且还能头头是道地向同学介绍他所学习到的知识。在他们的指引下更多的学生对数学产生了兴趣。2.拓展学生知识提高学生能力。
在趣味奥数社团活动,很多同学在有趣的数学知识的学习过 中丰富了语文的功底,对其他学科的知识也有不同程度的理解,使他们的知识面得到很大的拓展,同时我们也培养他们的解题能力。3.给老师一个学习的一机会。
在辅导的工作中我发现:趣味数学社团活动的辅导要我们老师投入的一定的时间精力进行专研,一个学期来我们老师的解题能力也有不同程度的提高,同时也加大了老师的知识面。
四、问题与努力方向
在实际操作中,由于教学时间、教学内容、教学方式、学生基础等因素,有时很难达到预期的效果。所以今后努力的方向是: 1.继续加强专业理论和教法方面的学习; 2.继续培养学生学习数学的兴趣; 3.培养学生的自信心和进取心,还有学习习惯。
总之,趣味奥数社团活动是教学活动课程的一种组织形式,它是数学教学工作不可缺少的一部分。趣味数学兴趣小组活动既调动了学生的学习的积极性,提高学习数学的兴趣和自学能力,又提高了学生计算能力,拓宽他们的思维,培养了正确的数学学习方法。提高课堂教学效率,使数学兴趣的学生既打好数学基础,又开拓视野、开发智力。一学期的实践也让我对校本课程有了更深的理解,虽然工作尚存在不足之处,但在学校领导的指导下,我有信心取得大的进步,使工作扎实有效,更好的开展学生潜能,促进自身的发展。
奥数题教案篇三
课题 :应用题的基本数量关系 知识点
用数学的方法解决在生活和工作中的实际问题—————解应用题。教学目标
1、分析思考题目所包含的数量关系,锻炼思维的灵活性。
2、让学生在学习数学的过程中,感受数学与日常生活的密 切联系,体验数学的价值,增强应用数学的意识。
3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。 教 学 内 容
【典型例题】
例1:一根绳子原来长20米,第一天剪去3米,第二天剪去的和第一天同样多,剩下的米数比原来短几米?
解题策略:这题要求剩下的米数比原来短几米,通常我们用以下的数量关系来解: 解法一:20-3-3=14(米)20-14=6(米)
有没有更简便的方法呢?聪明的小朋友是否考虑到“剩下的米数比原来短的米数”就是剪去的米数,这样只要用一步计算就能解答。解法二:3+3=6米
这种方法是不是更简便?
【画龙点睛】
解答应用题时,我们不但要多动脑,分析思考题目所包含的数量关系,还要选择最简便的方法来解答,锻炼思维的灵活性,使我们应得更聪明。
第2课时
【举一反三】
1、水果店有52箱水果,卖出16箱,又运进23箱,现在水果的箱数和原来比多了还是少了?多或少几箱?
2、饲养场养的羊比牛少36只,牛比猪少29只,那么羊比猪少几只?
3、把两条长38厘米的纸条粘在一起,成为一条长72厘米的纸条,中间粘贴部分的纸条长几厘米?
4、小明、小李和小红三个朋友做红花,小明和小李共做27朵,小明和小红共做32朵,小李和小红共做25朵,问:三个小朋友各做几朵?
5、五(1)班有20名少先队员,而五(2)班的少先队员比五(1)班多9名,问两班共有多少少先队员?
6、一道既简单又复杂的题:游戏开始了,请你们快速计算:
一辆载着16名乘客的公共汽车驶进车站,这时有4人下车,又上来4人; 在下一站上来10人,下去4人; 在下一站下去11 人,上来6人; 在下一站,下去4人,上来4人;
在下一站又下去8人,上来15。
还有,请你们接着计算:公共汽车继续往前开,到了下一站下去6人,上来7人;在下一站下去5人,没有人上来;在下一站只下去1人,又上来8人。
好了,记住你的计算结果,回答:这辆公共汽车究竟停了多少站?(不要重新计算哦)
7、商店共有61千克红糖,第一天卖掉19千克,第二天比第一天多卖4千克,商店还剩多少斤红糖?
8、买来17米布,做床单用去7米,做衣服用的和做床单用的同样多,还剩几米?
9、小王买了一只文具盒花了2元,又买了4个作业本,共
课题 :两步计算的应用题、用画图法解应用题 知识点
1、用数学的方法解决在生活和工作中的实际问题 —————解应用题。
2、用画图来表示题目中的条件,帮助理解题意,正确解答。
教学目标
1、分析思考题目所包含的数量关系,锻炼思维的灵活性。
2、让学生在学习数学的过程中,感学与日常生活的密切联 系,体验数学的价值,增强受数应用数学的意识。
3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。 教 学 内 容
第一课时: 【典型例题】
例1:小明的钱不到5元(是整角数),如果买6枝铅笔,钱不够,还少5角。小明原来最多有多少钱?
解题策略:问题求的是“小明原来最多有多少钱”。由题意已知小明原来的钱不到5元,但加上5角后就超过5元,且能被6整除。假设每枝笔8角钱,6枝则是48角,不到5元,所以不能;如果每枝9角,6枝就是54角,再减去少5角,原来最多49角。算式:6×9-5=49(【画龙点睛】
解答两步计算的应用题,如果不认真思考,提笔就做,很容易出错。所以应该先从条件或问题入手,仔细分析,找出正确的解题方法。
第二课时
【举一反三】
1、一盒糖果,总数不超过20颗,把它们平均分给6个小朋友,还余2颗,这盒糖最多有几颗?最少有几颗?
2、停车场里原来停放的轿车比卡车多12辆,后来轿车开走6辆,卡车开进8辆,这时停车场里哪种车多?多多少辆?
3、有大、小两桶油共重50千克,两个桶都倒出同样多的油后,分别还剩10千克和6千克。大、小两个桶原来各装油多少千克? 第二课时: 【典型例题】
例2:小明有10枝铅笔,小红有4枝铅笔,要使两人的铅笔同样多,小明要给小红几枝铅笔?
解题策略:我们用图来表示已知条件: 小明: 小红:
从图中我们可以清楚地看到,小明比小红多6枝铅笔,把多出来的6枝铅笔平均分成两份,即6÷2=3,所以小明给小红3枝铅笔后,两人的枝数相同。
【画龙点睛】
用画图法解应用题,特别是解技巧性较强的题,能形象直观地揭示数量关系,使抽象思维与形象思维协同发挥作用,从而构建出解题思维的模式。
第三课时 【举一反三】
1、小明给小红3枝铅笔后,两人的枝数相同。问:小明比小红多几枝铅笔?
2、小红有4枝铅笔,小明给小红3枝铅笔后,两人的枝数相同,小明有几支铅笔?
3、一根12米长的木条,锯3次,每段几米?
4、小红妈妈到水果店买苹果,她的钱若买3斤多1元,若买4斤少1元5角,问妈妈带了多少钱?
6、二(1)班同学做早操,每行人数相等,小李的位置从左边数是第3个,从右边数是第4 个,从前边数是第4个,从后边数是第2个。问:二(1)班有多少同学在做早操?
课题: 等量代换法 知识点
1、等量代换的思想:相等的量可以互相代替。
2、2、运用等量代换法来解决生活中的实际问题。
3、在解决等量代换数学问题的过程中,初步体会等量代换数学题的思想方法。 教学目标
1.使学生能初步学会等量代换的方法,接受等量代换的思想。2.培养学生的观察力及初步的逻辑推理能力。
3、让学生在经历解决问题的过程中,获得经验,让学生充分感受生活中处处有数学,数学与生活息息相关,形成我要学好数学的精神风貌。
4、在学习过程中培养学生团结、友好合作,营造和谐共进的氛围。 教 学 内 容 第一课时 【典型例题】
例
1、1只河马的体重等于2只大象的体重,1只大象的体重等于10匹马的体重。 1匹马的体重是320千克,这只河马的体重是多少千克?
解题策略:
1匹马的体重是320千克,10匹马的体重就是320×10=3200(千克),这也就是1只大象的体重。又知1只 河马的体重等于2只大象的体重,用2只大象的体重代替1只河马,则这只河马体重是3200×2=6400(千克)
【画龙点睛】
也可以这样想:1只大象的体重是10匹马的体重,即2只大象的体重就等于2个10匹马的体重,即20匹马的体重,因为2只大象的体重与1只河马的体重相等,所以1只河马的体重就是20匹马的体重。320×(2×10)=6400(千克)
第二课时 【举一反三】
1、已知1个 =3个 , 1个 =5个。那么1个 =()个
2、△+△+△+□=25,□=△+△。 求 △=? □=?
3、一只菠萝的重量等于2只梨的重量,也等于4只香蕉的重量,还等于2只苹果、1只梨、1只香蕉的重量之和。那么1只菠萝等于几只苹果的重量?
4、一条鱼,鱼头重9千克,鱼头重量等于鱼身一半加鱼尾的重量,而鱼身的重量等于鱼头加鱼尾的重量。问:这条鱼重几千克?
第三课时
同步练习
1.一根20米长的木条,把它据成4段,要锯几次?
2.商店有480本练习本,又运来500本,卖出去360本,商店还有多少本练习本?
3.小明的爸爸年龄比妈妈大5岁,妈妈今年38岁,爸爸今年多少岁?小明 出生时妈妈30岁,小明今年是多大?
4.○+○+○=21 ☆-□=38 □+□+□=15 ○+○+□=18 ☆-△=45 △+△+△=12 ○-□=()□-△=()□+△=()
5.一个数加上4,减去4,乘以4,再除以2,结果是2,求这个数。
6.一条毛毛虫从幼虫长成成虫,每天长大一倍,10天时能长到20厘米。问:长到5厘米时是第几天?
2.4瓶水全倒出来能装满3大碗,5杯水正好装满2瓶。装满3大碗要几杯水?20杯水能装满几大碗?