每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
一、引导记忆题(67分)
1、填一填。(24分)
(1)通常把比例尺写成前项是( )的比。
(2)甲、乙两城之间的距离是360千米,在一幅地图上量得两城之间的距离是4厘米,这幅地图的比例尺是( )。
(3)已知比例的两个内项互为倒数,一个外项是 ,另一个外项是( )。
(4)在水和糖的质量比是4:1的糖水中,含糖0.4克,含水( )克。
(5)甲、乙两车的速度比是4:5,行完一段路程,乙车所用时间和甲车所用时间的比是( )。
2、对号入座(将正确答案的序号填在括号里)。(28分)
(1)在1:1000000的地图上量得甲、乙两地间的距离是3厘米,表示实际距离是( )。
a. 300米 b. 300千米
c. 30千米 d. 3米
(2)下面每组中的两个比可以组成比例的是( )。
a. 10:12和35:42
b. 20:10和60:20
c. : 和8:12
(3)一个长方形按3:1变化后,得到的图形与原图形比较,正确的`说法是( )。
a. 面积扩大9倍 b. 面积缩小9倍
c. 周长扩大9倍 d. 周长缩小9倍
(4)在平面图上,5厘米表示实际距离是500米,則此图的比例尺是( )。
a. 1:100 b.1:10000
c. 1000:1
(5)在比例尺是1:2500000的地图上,量得甲、乙两地的距离是2厘米,則甲、乙两地的实际距离是( )千米。
a. 50 b. 25 c. 500
(6)在一幅比例尺是 的地图上,两地的实际距离是400千米,則两地的图上距离是( )厘米。
a. 2 b. 4
c. 3 d. 5
(7)有一个机器零件长1.5毫米,在图上表示3厘米,这幅图的比例尺是( )。
a. 1:200 b. 20:1
c. 1:20 d. 1:2
3、解比例。(15分)
(1)4.8:24=7:x
(2)x:0.28=1.75:0.7
(3)9:2.5=3.6:x
二、运用练习题(33分)
用比例解答下列各题。
1、一辆汽车3小时行210千米,照这样的速度,用4.5小时可以行多少千米?(10分)
2、某校新生入学考试,参加的男、女生人数之比是4:3。结果录取91人,其中男、女生人数比是8:5,未录取学生中男生、女生人数比为3:4。参加这次新生入学考试的学生有多少人?(13分)
3、小明看一本书,每天看15页,7天可以看完,如果每天看21页,可以提前几天看完?(10分)
[试题答案]
一、
1、(1)1 (2)1:9000000 (3) (4)1.6 (5)5:4
2、(1)c (2)a (3)a (4)b (5)a (6)b (7)b
3、(1)x=35 (2)x=0.7 (3)x=1
二、
1、 315千米
2、119人
提示:录取学生的比知道,人数也知道,故可求出录取的男、女生人数。
录取男生:91× =56(人)
录取女生:91-56=35(人)未录取男、女生人数比为3:4,设未录取男生为3x人,則未录取女生为4x人,参加考试的男生为3x+56人,参加考试的女生为4x+35,参加考试男、女生人数的比为4:3,(3x+56):(4x+35)=4:3,即(3x+56)×3=(4x+35)×4,解得x=4,参加考试男生为:56+3×4=68(人)参加考试女生为35+4×4=51(人),参加考试总人数为68+51=119(人)
3、2天
化简比求比值练习题
1. 连一连。
13 0.5∶0.03
503 14∶12
227 15∶45
15 1.2∶6
12 23∶9
16 3.75∶22.5
2. 化简下面各比。
21∶35= 0.65∶1.3=
710∶1415= 42∶49=
7∶72= 0.27∶0.18=
3. 六(2)班有男生20人,女生28人。
(1)男生人数是女生人数的.。
(2)女生人数是男生人数的。
(3)男生人数与女生人数的比是,比值是()。
(4)女生人数与全班人数的比是(),比值是()。
4.化简下面各比,并求出比值。
75∶100 1.25∶2
35∶12
115∶0.1
3.6∶0.8 3.6∶115
3∶35
1∶0.4
5. 工人叔叔配制不同浓度的盐水,写出每种盐水中盐与盐水的质量比,化简后填入。
杯号 盐(克) 水(克) 盐与盐水的质量比
a 5 25
b 10 90
c 40 200
哪杯盐水最淡?哪两杯浓度一样?
6. 有四个杯子,里面放着不同质量的水,现在向每个杯子里面加盐,使每个杯子的盐和盐水的最简比相同。如果在1号杯中加入10克盐,那么应分别在其他几个杯子中加入多少克盐?
以上就是为大家提供的六年级数学化简比练习题,希望能够对大家有用,更多相关内容,请大家及时锁定数学网!
【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
【2】周雯的妈妈是豫林水泥厂的化验员。 一天,周雯来到化验室做作业。做完后想出去玩。 “等等,妈妈还要考你一个题目,”她接着说,“你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你 能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来 吗?” 爱动脑筋的周雯,是学校里有名的“小机灵”,她只想了一会儿就做到了。 请你想想看,“小机灵”是怎样做的?
【3】三个小伙子同时爱上了一 个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失 误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个 人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
【4】一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个 人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可 是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?
按:心理问题,不是逻辑问题
【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖
【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
【8】猜牌问题
s先生、p先生、q先生他们知道桌子的抽屉里有16张扑克牌:红桃a、q、4 黑桃j、8、4、2、7、3 草花k、q、5、4、6 方块a、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 p先生,把这张牌的花色告诉q先生。这时,约翰教授问p先生和q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,s先生听到如下的对话:p先生:我不知道这张牌。
q先生:我知道你不知道这张牌。
p先生:现在我知道这张牌了。
q先生:我也知道了。
听罢以上的对话,s先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
【10】某城市发生了一起汽车撞人逃跑事件
该城市只有两种颜色的车,蓝色15% 绿色85%
事发时有一个人在现场看见了
他指证是蓝车
但是根据专家在现场分析,当时那种条件能看正确的可能性是80%
那么,肇事的车是蓝车的概率到底是多少?
【11】有一人有240公斤 水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比, (即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
【13】1=5 2=15 3=215 4=2145 那么5=?
【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。
问: 有多少种排队方法 使得 每当一个拥有1美元买票时,电影院都有50美分找钱
注:
1美元=100美分
拥有1美元的人,拥有的是纸币,没法破成2个50美分
【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
【16】有一种体育竞赛共含m个项目,有运动员a,b,c参加,在每一项目中,第一,第二,第三名分别的x,y,z分,其中x,y,z为正整数且x>y>z。最后a得22分,b与c均得9分,b在百米赛中取得第一。求m的值,并问在跳高中谁得第二名。
【17】前提:
1 有五栋五种颜色的房子
2 每一位房子的主人国籍都不同
3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物
4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料
提示:
1 英国人住在红房子里
2 瑞典人养了一条狗
3 丹麦人喝茶
4 绿房子在白房子左边
5 绿房子主人喝咖啡
6 抽pall mall烟的人养了一只鸟
7 黄房子主人抽dunhill烟
8 住在中间那间房子的人喝牛奶
9 挪威人住第一间房子
10 抽混合烟的人住在养猫人的旁边
11 养马人住在抽dunhill烟的人旁边
12 抽blue master烟的人喝啤酒
13 德国人抽prince烟
14 挪威人住在蓝房子旁边
15 抽混合烟的人的邻居喝矿泉水
问题是:谁养鱼???
【18】5个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。根据以下线索确定谁是养猫的人。
1. 红房子在蓝房子的右边,白房子的左边(不一定紧邻)
2. 黄房子的主人来自香港,而且他的房子不在最左边。
3. 爱吃比萨的人住在爱喝矿泉水的人的隔壁。
4. 来自北京的人爱喝茅台,住在来自上海的人的隔壁。
5. 吸希尔顿香烟的人住在养马人的右边隔壁。
6. 爱喝啤酒的人也爱吃鸡。
7. 绿房子的人养狗。
8. 爱吃面条的人住在养蛇人的隔壁。
9. 来自天津的人的邻居(紧邻)一个爱吃牛肉,另一个来自成都。
10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)
12.红房子的人爱喝茶。
13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。
15.来自上海的人住在左数第二间房子里。
16.爱喝矿泉水的人住在最中间的房子里。
17.爱吃面条的人也爱喝葡萄酒。
18.吸“555”香烟的人比吸希尔顿香烟的人住的靠右
【19】斗地主附残局
地主手中牌2、k、q、j、10、9、8、8、6、6、5、5、3、3、3、3、7、7、7、7
长工甲手中牌大王、小王、2、a、k、q、j、10、q、j、10、9、8、5、5、4、4
长工乙手中牌2、2、a、a、a、k、k、q、j、10、9、9、8、6、6、4、4
三家都是明手,互知底牌。要求是:在三家都不打错牌的情况下,地主必须要么输要么赢。
问:哪方会赢?
【20】一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
【21】u2合唱团在17分钟 内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起 过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则 以较慢者的速度为准。bono需花1分钟过桥,edge需花2分钟过桥,adam需花5分钟过桥,larry需花10分钟过桥。他们要如何在17分钟内过 桥呢?
【22】一个家庭有两个小孩,其中有一个是女孩,问另一个也是女孩的概率
(假定生男生女的概率一样)
【23】为什么下水道的盖子是圆的?
【24】有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、90克各一份?
【25】芯片测试:有2k块芯片,已知好芯片比坏芯片多.请设计算法从其中找出一片
好芯片,说明你所用的比较次数上限.
其中:好芯片和其它芯片比较时,能正确给出另一块芯片是好还是坏.
坏芯片和其它芯片比较时,会随机的给出好或是坏。
【26】话说有十二个鸡蛋,有一个是坏的(重量与其余鸡蛋不同),现要求用天平称三次,称出哪个鸡蛋是坏的!
【27】100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格, 那么,在这100人中,至少有( )人及格。
【28】陈奕迅有首歌叫十年
吕珊有首歌叫3650夜
那现在问,十年可能有多少天?
【29】
1
1 1
2 1
1 2 1 1
1 1 1 2 2 1
下一行是什么?
【30】烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?
烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢? (微软的笔试题)
【31】共有三类药,分别重1g,2g,3g,放到若干个瓶子中,现在能确定每个瓶子中只有其中一种药,且每瓶中的药片足够多,能只称一次就知道各个瓶子中都是盛的哪类药吗?
如果有4类药呢?5类呢?n类呢(n可数)?
如果是共有m个瓶子盛着n类药呢(m,n为正整数,药的质量各不相同但各种药的质量已知)?你能只称一次就知道每瓶的药是什么吗?
注:当然是有代价的,称过的药我们就不用了
【32】假设在桌上有三个密封 的盒,一个盒中有2枚银币(1银币=10便士),一个盒中有2枚镍币(1镍币=5便士),还有一个盒中有1枚银币和1枚镍币。这些盒子被标上10便士、 15便士和20便士,但每个标签都是错误的。允许你从一个盒中拿出1枚硬币放在盒前,看到这枚硬币,你能否说出每个盒内装的东西呢?
【33】有一个大西瓜,用水果刀平整地切,总共切9刀,最多能切成多少份,最少能切成多少份?
主要是过程,结果并不是最重要的
【34】一个巨大的圆形水池,周围布满了老鼠洞。猫追老鼠到水池边,老鼠未来得及进洞就掉入水池里。猫继续沿水池边缘企图捉住老鼠(猫不入水)。已知v猫=4v鼠。问老鼠是否有办法摆脱猫的追逐?
【35】有三个桶,两个大的可装8斤的水,一个小的可装3斤的水,现在有16斤水装满了两大桶就是8斤的桶,小桶空着,如何把这16斤水分给4个人,每人4斤。没有其他任何工具,4人自备容器,分出去的水不可再要回来。
1、先把5升的灌满,倒在6升里,这时6升的壶里有5升水
2.再把5升的灌满,用5升的壶把6升的灌满,这时5升的壶里剩4升水
3.把6升的水倒掉,再把5升壶里剩余的水倒入6升的壶里,这时6升的壶里有4升水
4.把5升壶灌满,倒入6升的壶,5-2=3
【2】
把第二个满着的杯子里的水倒到第五个空着的杯子里
【3】
小黄。因为小李是第一个出手的,他要解决的第一个人就会是
小林,这样就会保证自己的安全,因为如果小黄被解决,自己理所当然地会成为小林的目标,他也必定会被打死。而小黄如果第一枪不打小林而去打小李,自己肯定会死(他命中较高,会成为接下来的神枪手小林的目标)。他必定去尝试先打死小林。那么30% 50%的几率是80%(第一回合小林的死亡率,但会有一点点偏差,毕竟相加了)。那么第一回合小黄的死亡率是20%多一点点(小林的命中减去自己的死亡率)。假设小林第一回合死了,就轮到小李打小黄了,那么小李的命中就变成了50%多一点点(自己的命中加上小黄的死亡率)。这样就变成了小李小黄对决,
第二回合的小李的第一枪命中是50%,小黄也是。可是如果拖下去的话占上风的自然就是小黄了,可能赢得也自然是小黄了。至于策略我看大家都领悟了吧。
【4】
甲分三碗汤,乙选认为最多和最少的倒回灌里再平分到剩余的两个碗里,让丁先选,其次是甲,最后是乙
【5】
假如先前n个中没有重叠且边上的都超出桌子的边上且全都是紧靠着的.那么根据题意就可以有:
空隙个数y=3n/2 3(自己推算)
每一个空都要一个圆来盖
桌面就一共有圆的数为:
y n=3n/2 3
=5n/2 3 <=4n(除n=1外)
所以可以用4n个硬币完全覆盖.
【6】
用绳子围球一周后测绳长来计算半径(用纸筒套住球来测更准)
借助排水法测体积后计算半径
【7】
要两人才能做到,
先在平面上摆放一枚,再在这枚硬币的正面立着放两枚(这两枚是侧面接触的),这样,这三枚硬币之间形成一个三角形空隙。剩下的两枚在空隙处交叉就行了,注意这两枚同样是平躺着,但可能需要翘起一定的角度。
【8】
方块5
【9】
经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。
这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。
那么就假设我们是c,来看看c是怎么做出来的:c看到的是a的36和b的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):
假设自己(c)是72的话,那么b在第二回合的时候就可以看出来,下面是如果c是72,b的思路:这种情况下,b看到的就是a的36和c的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):
如果假设自己(b)头上是36,那么,c在第一回合的时候就可以看出来,下面是如果b是36,c的思路:这种情况下,c看到的就是a的36和b的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(c)头上是0,那么,a在第一回合的时候就可以看出来,下面是如果c是0,a的思路:这种情况下,a看到的就是b的36和c的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在a在第一回合没报出自己的36,c(在b的想象中)就可以知道自己头上不是0,如果其他和b的想法一样(指b头上是36),那么c在第一回合就可以报出自己的72。现在c在第一回合没报出自己的36,b(在c的想象中)就可以知道自己头上不是36,如果其他和c的想法一样(指c头上是72),那么b在第二回合就可以报出自己的108。现在b在第二回合没报出自己的108,c就可以知道自己头上不是72,那么c头上的唯一可能就是144了。
【10】
15%*80%/(85%×20%+15%*80%)
【11】
f(x)=(60-2x)*x,当x=15时,有最大值450。
1820元设是x公里处赚最多钱。问题就成是求一个一元二次方程的最大值,求得是在15公里处赚钱最多,450元。一共240公斤……
【12】
6种结果
大、中、小:(23068)(52570)(82072)(111574)(141076)(17578)
【13】
因为1=5,所以5=1
【14】
本题可用递归算法,但时间复杂度为2的n次方,也可以用动态规划法,时间复杂度为n的平方,实现起来相对要简单得多,但最方便的就是直接运用公式:排队的种数=(2n)!/[n!(n1)!]。
如果不考虑电影院能否找钱,那么一共有(2n)!/[n!n!]种排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,如果他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!/[(n-1)!(n 1)!](从2n个人中取出n-1个人的组合数)种,所以合格的排队种数就是(2n)!/[n!n!]-(2n)!/[(n-1)!(n 1)!] =(2n)!/[n!(n 1)!]。至于为什么不合格数是(2n)!/[(n-1)!(n1)!],说起来太复杂,这里就不讲了。
【15】
2元
【16】
m=5 c得第二名
因为abc三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即m=5.
a得分为22分,共5项,所以每项第一名得分只能是5,故a应得4个第一名一个第二名.22=5*42,第二名得2分,又b百米得第一,9=5 1 1 1 1 所以跳高中只有c得第二名
b的5项共9分,其中百米第一5分,其它4项全是1分,9=5 1=1 1 1.即b除百米第一外全是第三,跳高第二必定是c所得
【17】
房子 黄 蓝 红 绿 白
国籍 挪威 丹麦 英国 德国 瑞士
饮料 矿泉水 茶 牛奶 咖啡 啤酒
宠物 猫 马 鸟 鱼 狗
香烟 dunhill 混合烟 pallmall princeblue master
【18】
1 2 3 4 5
蓝房子 绿 黄 红 白
北京人 上海 香港 天津 成都
茅台酒 葡萄 矿泉水 茶 啤酒
豆腐 面条 牛肉 比萨 鸡
健牌 希尔顿 万宝路 555 红塔山
马 狗 蛇 猫 鱼
【19】
a家先打:55
b家如果打:tt的话.
c家随便他吃不吃..
a家都不跟.(反正b家跟c家哪家有吃55的话,都不跟.除非a家88可以出就跟)
如果刚才是b家吃的话,就b家出牌:你看.b家最多也出44然后c家吃他66.如果他是出两个99那地主也不跟!;如果b家出单的话.地主还有一个2可以压!(反正b家跟c家肯定是会打对子的!)
照刚才那样.a家牌下面应该剩:2 k q j t 9 777766 3333
b家:大王 小王 2 a k qq jj 9 8 55
c家:22 aaa k q j t 99 8 44
a家吃完88后.b家吃jj(反正无论如何.都会打单的.)要是打单的话.a家就用2压.b家双王不可能会压吧.(即使压了也没事.)
a家用2压完后就打:k q j t 9
b家如果用双王吃的话.那等他出牌的时候.马上用3333吃他.如果b家没吃的话.c家会吃:a k q jt
然后a家可以用3333压下a k q j t 如果b家用双王吃的话.那正合我意了哈.!a家反正只剩下7777 66了等他打什么..都用7777吃他.最后打66
【20】
先拿下第一楼的钻石,然后在每一楼把手中的钻石与那一楼的钻石相比较,如果那一楼的钻石比手中的钻石大的话那就把手中的钻石换成那一层的钻石。
(因为“只能拿一次”是在外文翻译过来的,所以是总共只能拿一次,还是每层只能拿一次?无法知道。但如果这个和“在稻田一直走,不能回头,请你捡出最大的一个稻穗”这样的题目一样的话,那么上面的就是正确答案!)
【21】
假设这四个人分别为甲(1分钟)乙(2分钟)丙(5分钟)丁(10分钟)
第一次去:甲和乙 (2分钟)
第一次回:甲(1分钟)
第二次去:丙和丁(10分钟)
第二次回:乙(2分钟)
第三次去:甲和乙(2分钟)
总计 :17分钟
【22】
1/3
(因为你知道一共有两个小孩 其中一个是女孩 而你已知的那个女孩并不知道是她第一个孩子还是第二个孩子所以它的概率是1/3
如果题目换成 已知第一个是女孩 那么第二个是女孩的概率就是1/2了)
【23】
主要是因为如果是方的、长方的或椭圆的,盖子很容易掉进地下道!但圆形的盖子嘛,就可以避免这种情况了。另外、圆形的盖子可以节省材料,增大洞口面积,井盖及井座的强度增加不易轧坏。
【24】
1. 天平一边放7 2=9克砝码,另一边放9克盐。
2. 天平一边放7克砝码和刚才得到的9克盐,另一边放16克盐。
3. 天平一边放刚才得到的16克盐和再刚才得到的9克盐,另一边放25克盐。
【25】
把第一块芯片与其它逐一对比,看看其它芯片对第一块芯片给出的是好是坏,如果给出是好的过半,那么说明这是好芯片,完毕。如果给出的是坏的过半,说明第一块芯片是坏的,那么就要在那些在给出第一块芯片是坏的芯片中,重复上述步骤,直到找到好的芯片为止。
【26】
12个时可以找出那个是重还是轻,13个时只能找出是哪个球,轻重不知。
把球编为①②③④⑤⑥⑦⑧⑨⑩⑾⑿。(13个时编号为⒀)
第一次称:先把①②③④与⑤⑥⑦⑧放天平两边,
㈠如相等,说明特别球在剩下4个球中。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿特别,把①与⑿作第三次称量即可判断是⑿是重还是轻
⒉如①⑨<⑩⑾说明要么是⑩⑾中有一个重的,要么⑨是轻的。
把⑩与⑾作第三次称量,如相等说明⑨轻,不等可找出谁是重球。
⒊如①⑨>⑩⑾说明要么是⑩⑾中有一个轻的,要么⑨是重的。
把⑩与⑾作第三次称量,如相等说明⑨重,不等可找出谁是轻球。
㈡如左边<右边,说明左边有轻的或右边有重的
把①②⑤与③④⑥做第二次称量
⒈如相等,说明⑦⑧中有一个重,把①与⑦作第三次称量即可判断是⑦与⑧中谁是重球
⒉如①②⑤<③④⑥说明要么是①②中有一个轻的,要么⑥是重的。
把①与②作第三次称量,如相等说明⑥重,不等可找出谁是轻球。
⒊如①②⑤>③④⑥说明要么是⑤是重的,要么③④中有一个是轻的。
把③与④作第三次称量,如相等说明⑤重,不等可找出谁是轻球。
㈢如左边>右边,参照㈡相反进行。
当13个球时,第㈠步以后如下进行。
把①⑨与⑩⑾作第二次称量,
⒈如相等,说明⑿⒀特别,把①与⑿作第三次称量即可判断是⑿还是⒀特别,但判断不了轻重了。
⒉不等的情况参见第㈠步的⒉⒊
【27】
首先求解原题。每道题的答错人数为(次序不重要):26,21,19,15,9
第3分布层:答错3道题的最多人数为:(26 21 19 15 9)/3=30
第2分布层:答错2道题的最多人数为:(21 19 15 9)/2=32
第1分布层:答错1道题的最多人数为:(19 15 9)/1=43
max_3=min(30, 32, 43)=30。因此答案为:100-30=70。
其实,因为26小于30,所以在求出第一分布层后,就可以判断答案为70了。
要让及格的人数最少,就要做到两点:
1. 不及格的人答对的题目尽量多,这样就减少了及格的人需要答对的题目的数量,也就只需要更少的及格的人
2. 每个及格的人答对的题目数尽量多,这样也能减少及格的人数
由1得每个人都至少做对两道题目
由2得要把剩余的210道题目分给其中的70人: 210/3 = 70,让这70人全部题目都做对,而其它30人只做对了两道题
也很容易给出一个具体的实现方案:
让70人答对全部五道题,11人仅答对第一、二道题,10人仅答对第二、三道题,5人答对第三、四道题,4人仅答对第四、五道题
显然稍有变动都会使及格的人数上升。所以最少及格人数就是70人!
【28】
十年可能包含2-3个闰年,3652或3653天。
19这个闰年就是28天,1898~1907这就是3651天,闰年如果是整百的倍数,如1800,1900,那么这个数必须是400的倍数才有29天,比如1900年2月有28天,2月有29天。
【29】
下行是对上一行的解释 所以新的应该是3个1 2个2 1个1 :312211
【30】
一,一根绳子从两头烧,烧完就是半个小时。
二,一根要一头烧,一根从两头烧,两头烧完的时候(30分),将剩下的一根另一端点着,烧尽就是45分钟。再从两头点燃第三根,烧尽就是1时15分。
【31】
第一个瓶子拿出一片,第二个瓶子拿出四片,第三个拿出十六片,……第m个拿出n 1的m-1次方片。把所有这些药片放在一起称重量。
【32】
取出标着15便士的盒中的一个硬币,如果是银的说明这个盒是20便士的,如果是镍的说明这个盒是10便士的,再由每个盒的标签都是错误的可以推出其它两个盒里的东西。
【33】
最少10,最多130
见下表,表中蓝色部分服从2为底的指数函数规律,红色部分的数值均为其左边与左上角的两个数之和。
x
0 1 2 3 4 5 6 7 8 9
x个点最多能把直线分成多少部分
1 2 3 4 5 6 7 8 9 10
x条直线最多能把平面分成多少部分
1 2 4 7 11 16 22 29 37 46
x个平面最多能把空间分成多少
【34】
第一步:游到水池中心。
第二步:从水池中心游到距中心r/4处,并始终保持鼠、水池中心、猫在一直线上。
第三步:沿与中心相反方向的直线游3r/4就可以到达水池边,而猫沿圆周到达那里需要3.14r,所以捉不到老鼠。
【35】
表示为880,接下来,将一个大桶的水倒入小桶中,倒满,表示为853,(第2个大桶减3,小桶加3)则过程如下:
880——853:将3斤给第1个人,变为850(此时4人分别有水3-0-0-0)
850——823:将2斤给第2个人,变为803(此时4人分别有水3-2-0-0)
803——830——533——560——263——281:将1斤给第1个人,变为280(此时4人分别有水4-2-0-0)
280——253——703——730——433——460——163:将1斤给第3个人,变为063(此时4人分别有水4-2-1-0)
063——081:将1斤给第4个人,变为080(此时4人分别有水4-2-1-1)
080——053——350——323:将2斤给第2个人,将2个3斤分别给第3、4个人,(此时4人分别有水4-4-4-4)
问题答案——遗嘱
“你们把马换过来骑”。注意问题中说的是谁的“马”慢。快与慢是相对的,问谁的马慢与问谁的马快是一回事。
问题答案——快速回答
⑴一只没有,其余的都飞了
⑵10条,死鱼也是鱼
⑶不一定。如果是沿着对角线切,就剩三个角;如果从某一个角向对边切,则剩四个角;如果是从某一边向相邻边切,则剩五个角,比原来多一个角
⑷9人,总共11人。题中的前、后和中间都是相对的
⑸一个也不用,两个人面对面即可
⑹还有 4个,这是1个人捉9个人的游戏
⑺不可能,半夜不会有太阳
⑻三个字,分别是:国、际、歌
问题答案——分袜子
把每双袜子都分成两只,每人各拿一只即可。
问题答案——钱哪里去了?
两个父亲和两个儿子实际是三个人(祖孙三代)。
问题答案—— 问路
人的脑袋露出“石”头上,相当“石”字出头,即暗示为“右”。因此应向右走。
问题答案——跑马场
十分钟。这时公马跑了四圈,母马跑三圈,小马跑两圈。请你再想想看,如果公马十
分钟能跑六圈,母马能跑四圈,其他不变,答案又是多少?
问题答案——a国与b国
在a国用a国币换b国币,再把b国币带到b国换成a国币,就是以“保值”的兑换“贬值”的,再把“贬值”的变成“保值”的,周而复始。这种便宜的事只能一开始实现,以后谁也不会拿本国的钱到邻国去用。
问题答案——幼儿园
是一些稍大点儿的孩子,他们可以自己走着去。
>>>返回目录
智商问题【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
智商问题【2】 周雯的妈妈是豫林水泥厂的化验员。 一天,周雯来到化验室做作业。做完后想出去玩。 “等等,妈妈还要考你一个题目,”她接着说,“你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你 能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来 吗?” 爱动脑筋的周雯,是学校里有名的“小机灵”,她只想了一会儿就做到了。 请你想想看,“小机灵”是怎样做的?
智商问题【3】 三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手*枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色 的枪手是小林,他从不失 误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个 人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
智商问题【4】 一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个 人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可 是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?
按:心理问题,不是逻辑问题
智商问题【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖
智商问题【6】一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?方法很多,看看谁的比较巧妙
智商问题【7】五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
智商问题【8】猜牌问题
s 先生、p先生、q先生他们知道桌子的抽屉里有16张扑克牌:红桃a、q、4 黑桃j、8、4、2、7、3 草花k、q、5、4、6 方块a、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 p先生,把这张牌的花色告诉q先生。这时,约翰教授问p先生和q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,s先生听到如下的对话:p先生:我不知道这张牌。
q先生:我知道你不知道这张牌。
p先生:现在我知道这张牌了。
q先生:我也知道了。
听罢以上的对话,s先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
智商问题【9】一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?
智商问题【10】某城市发生了一起汽车撞人逃跑事件
该城市只有两种颜色的车,蓝色15% 绿色85%
事发时有一个人在现场看见了
他指证是蓝车
但是根据专家在现场分析,当时那种条件能看正确的可能性是80%
那么,肇事的车是蓝车的概率到底是多少?
智商问题【11】 有一人有240公斤 水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比, (即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
智商问题【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
智商问题【13】1=5 2=15 3=215 4=2145 那么5=?
智商问题【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院开始卖票时1分钱也没有。
问: 有多少种排队方法 使得 每当一个拥有1美元买票时,电影院都有50美分找钱
注:
1美元=100美分
拥有1美元的人,拥有的是纸币,没法破成2个50美分
智商问题【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?