数学选修课结课心得6篇(优质)
文件格式:DOCX
时间:2023-03-29 00:00:00    小编:矮人爷爷带你学电

数学选修课结课心得6篇(优质)

小编:矮人爷爷带你学电

在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。优质的心得体会该怎么样去写呢?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

数学选修课心得体会大学数学选修课心得体会篇一

《数学课程标准》提出“人人学有价值的数学;人人都能获得必须的数学。”强调了大众数学学习的内容的应用价值——能适应未来社会生活的需要。因此,我们的数学教学除了系统的数学知识的教学外,还应密切联系生活实际,调整相应的数学内容,做到生活需要什么样的数学内容,就教学什么样的数学知识,让生活中人们所必须的知识与技能成为数学教学的目标与追求。如过去我们数学内容中计算有些难,而现代社会的飞速发展,计算器、计算机的全面普及,计算难度有所降低,更注重计算的必要性和算理。改变了课程过去“繁、难、偏、旧”和过于注重书本知识的现状,加强了课程内容与数学学习生活以及社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。

化。律。总之,要在一堂课中让学生体验整个数学过程,实现课堂教学的三维目标。

以往的应试教育注重的是学生学业成绩的好坏,以考试作为评价学生的唯一手段,新的评价体系不仅包括对学生的评价,而且还提出了对教师和学校的评价,不以学期和学年的一次性考试来评定学生,强调对学生在学习过程中进展情况的评价,强调对学生能力与自信心的建立,参与活动的意识和合作学习的精神进行评价。

总之,对新课标的学习和实施确实给我的日常教学带来了生机和活力。在一次次的动手实践中、在一次次的探索与交流中,我们的学生越发的活泼与可爱,同时也使我和我的学生们在浑然不觉之中感受着知识的滋养。面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。通过寒假对《数学课程标准》进一步的深入学习,在以后的教学工作中,我将不会迷惑、彷徨,我相信在以,上好每节课。

提,培养学生的观察能力。

新课标指出:学生能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明。低年级学生年龄小,阅历浅,无意注意占主导,观察能力有限。他们最初的观察是无目的、无顺序的,只是对教材中的插图、人物、颜色等感兴趣,不能领悟其中蕴藏的数学知识。在教学中我们要尊重他们的兴趣,先给他们一定的时间看,接着,再一步一步引导他们观察,将他们的注意引入正题,按一定的规律去观察。

找。教师方法。

(二)、利用教材插图,培养学生的语言表达能力。

语言是思维的外在表现,语言的发展和思维的发展密切相关,培养学生的语言表达能力能促进他们思维的发展。因此,在教学中,教师充分利用每一幅插图启发学生说,首先鼓励每一位学生试说,并且不作统一要求,让每个学生把自己所观察到的说出来,接着再同桌互相说,这样学生对内容的理解也进了一步。

(三)、创设学习情境,培养学生动手操作能力。

数学知识是比较抽象的,而低年级学生的思维特点,是以具体形象思维为主的,同时也保留着直观动作思维形式。教师要从学生年龄特点和思维特点出发,本着数学来源于生活这一事实,自始至终都要从学生生活实际出发引入课题,创设操作学习情境,让学生在实际操作中,通过观察来理解数学概念,掌握数学方法,逐步培养学生的各种能力。

例如:在教学“7的组成”时,教师可先让学生拿出7根小棒,再让学生把这7根小棒分成两堆。放手让学生自己摆小棒,很快学生马上就得出不同种分法,这样,学生通过自己动手操作、观察、比较,很快就得出了7的组成。

《数学课程标准》指出:“提倡让学生在做中学”。

数学选修课心得体会大学数学选修课心得体会篇二

20xx年12月9日,数学教研会组织了同课异构教研活动。听了陈玉芝和封惠两位数学老师的执教的《平均数》一课,此次听课收获很大,受益匪浅,不仅让我领略到了两位数学教师的讲课风采,也让我从中发觉到了在课堂教学方面自身的浅薄与不足。在以后的'教学中,我会努力上好每一节课,向身边的优秀教师学习。下面我谈谈自己的体会。

第一、教师善于创设情境;教师在教学过程中创设的情境,目标明确,能为教学服务。提高了学生的好奇心、激发了求知欲,进而促进其思维。教师创设的情境要真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。

在这两节课里,上课的老师都能根据学生的特点为学生创设充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用小学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,创设使学生感到真实、新奇、有趣的学习情境,激起学生学习兴趣。让学生用数学思想去思考问题,解决问题。使他们在质疑中思考,在思考中学到知识。

第二、教师在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,也充分体现了“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。

听了2节课,每堂课细细的听下来后,感觉每位授课教师都煞费苦心的作了周密而细致的准备,所以每堂课都有很闪光的亮点供我们参考、学习、借鉴,当然有比较就会有鉴别。所以我会把其中的精华加以吸取,尝试运用到以后的课堂教学过程中,来逐步的提高和完善自己的课堂教学。

师的课,取人之长,补己之短,争取在以后的教学中取得好成绩。

数学选修课心得体会大学数学选修课心得体会篇三

教师在备课过程中备教的方法很多,备学生的学习方法少。老师注意到自身要有良好的语言表达能力(如语言应简明扼要、准确、生动等),注意到实验操作应规范、熟练,注意到文字的表达(如板书编写有序、图示清晰、工整等),也注意对学生的组织管理,但对学生的学考虑不够。老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标;要根据不同年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。

教学过程是一个极具变化发展的动态生成的过程,其间必然有许多非预期的因素,即便教师对学情考虑再充分,也有“无法预知”的场景发生,尤其当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,不能牵着学生的鼻子“走教案”。

要促成课堂教学的动态生成,教师要创造民主和谐的课堂教学氛围。如果我们的课堂还是师道尊严,学生提出的问题,教师不回答,不予理睬,或马上表现出不高兴,不耐烦,那学生的学习积极性一定大打折扣,因而要让我们的课堂充满生气,师生关系一定要开放,教师要在教学中真正建立人格平等、真诚合作的民主关系。同时教师要高度重视学生的一言一行,在教与学的平台上,做到教学相长,因学而教,树立随时捕捉教学机会的意识,就必定会使我们的课堂教学更加活泼有趣,更加充满生机,也更能展示教师的无穷魅力。课堂提问注意开放性。

开放性的提问,没有统一的思维模式与现成答案,学生回答完全是根据自已的理解回答。答案一定会是丰富多彩,这可以作为我们教师的教学资源。教师根据这些答案给予肯定、或给予引导,使学生的思想认识在教师的肯定或引导中得到提高。要促进课堂教学的动态生成,还要充分发挥教师的教学智慧,教师对教育过程的高超把握就是对这种动态生成的把握。

新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,即要求传统的居高临下的教师地位在课堂教学中将逐渐消失,取而代之的是教师站在学生中间,与学生平等对话与交流;过去由教师控制的教学活动的那种沉闷和严肃要被打破,取而代之的是师生交往互动、共同发展的真诚和激情。因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。学生学习的灵感不是在静如止水的深思中产生,而多是在积极发言中,相互辩论中突然闪现。学生的主体作用被压抑,本有的学习灵感有时就会消遁。

教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。教师可以根据教材特点组织学生讲。有的教师在教学中只满足于学生说出是与非,或是多少,至于说话是否完整,说话的顺序如何,教师不太注意。这样无助于学生思维能力的培养。数学教师要鼓励、指导学生发表见解,并有顺序地讲述自己的思维过程,并让尽量多的学生能有讲的机会,教师不仅要了解学生说的结果,也要重视学生说的质量,这样坚持下去,有利于培养学生的逻辑思维能力。

根据小学生的年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。例如,口算,现在已经名不副实,多数用笔算代替,学生动手不动口。其实,过去不少教师创造了很多口算的好方法,尤其在低年级教学中,寓教学于游戏、娱乐之中,活跃了课堂气氛,调动了学生学习积极性,其它教材也可以这样做。我们不能把数学课变成枯燥无味、让学生学而生厌的课。在数学课上,教师要引导学生既动手又动口,并辅以其它教学手段,这样有利于优化课堂气氛,提高课堂教学效果,也必然有利于提高教学质量。

总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。

数学选修课心得体会大学数学选修课心得体会篇四

浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。

关于数学我这样理解:数学,用公式的话来解释它就是研究数量、结构、变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数、计算、量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。

数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(l、a、white)的数学文化论力图把数学回归到文化层面。克莱因(m、kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。

课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。

奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。

数学选修课心得体会大学数学选修课心得体会篇五

在没接触《数学文化》这门课程之前我就经常听我朋友说有关这门课程的东西,那时候我一直以为跟我们所学的高数、线性代数一样枯燥无味。直到真正去上了这门课程之后,我才发觉跟我一开始想的完全不一样。

在《数学文化》的课堂上,老师的授课方式很有趣,每个专题各有特色,在听老师的详细讲述后,我对数学文化颇有兴趣,深有感触,特别是“混沌”和“维数”这两个专题。

我觉得老师对“混沌”和“维数”这两个专题见解独到,我也能从中吮吸到一定的精华。这两个专题所涉及的内容也让我很感兴趣。

关于“混沌”,一开始对这两个字根本不了解。还误以为跟“馄饨”有一定关系,直到听了老师仔细的讲述,我才真正明白了“混沌”的含义。其实它也是数学文化中的一个方面,在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。或者说混沌系统对无限小的初值变动和微扰也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。上了关于“混沌”这个专题后,我第一个想到的典例就是天气变化,我觉得它很形象地形容了天气变化的特性,其中最著名的表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就会在佛罗里达引起一场飓风。在今天计算机技术飞速发展的时代,混沌学已发展成为一门影响深远、发展迅速的前沿科学,同时也跟我们的日常生活息息相关。

而另外一个专题就是“维数”,对于这个专题我比较熟悉,因为在之前的数学课堂上便有接触关于一维、二维···甚至n维,不过在学的时候不是重点章节,数学老师也没有给我们做深入的讲解,直到上了数学文化这门课,老师给我们做了一个专题方便我们更系统地了解“维数”这一概念。所谓“维数”,又称维度,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。之前还不知道维数有那么多讲究,现在才真正明白每个维数所代表的含义,0维是一点,没有长度。一维是线,只有长度。二维是一个平面,是由长度和宽度(或曲线)形成面积。三维是二维加上高度形成体积面。四维分为时间上和空间上的四维,人们说的四维经常是指关于时间的概念。准确来说,四维有两种。第一种是四维时空,指三维空间加一维时间。另一种便是四维空间,只指四个维度的空间。四维运动产生了五维...虽然“维数”比较抽象,但是在我们的实际生活中,也有一些相关领域把一个常用和熟知的有限维数的结果推广到无限维数的情形,对我们也有一定的实用意义。

在数学文化这门课程中,我受益匪浅,老师别样的讲课风格以及详细的课件内容让我对数学文化这个博大精深的领域兴致勃发,在学习了关于“混沌”和“维数”这两个专题之后,使我更加想了解更多有关数学文化的想法,对我们来说,虽然数学文化很抽象,但是对我们的实际生活却很有影响。

我觉得,在这门课程结束之后,我依然会更深入地去了解有关数学文化方面的知识,因为深受老师的熏染,我更渴望去了解相关知识。

总而言之,我很荣幸抢到了数学文化这门课,更荣幸的是有这样一位老师传授了很多有趣的关于数学方面又涉及实际生活的知识。辛苦了,谢谢老师这学期的辛勤教导!

数学选修课心得体会大学数学选修课心得体会篇六

大学数学选讲课是对高等数学课的提升和深化,老师针对重难知识点,结合考研真题和参考资料精题,细致向我们讲解。在解题的过程中,老师向我们传授了解题的不同思路角度,教会我们要学会举一反三,将知识点融会贯通。点拨启发式的教学激发着同学们学习的兴致,使我们受益匪浅。

大学数学选讲不仅对考研的同学有很大帮助,对像我这样不考研学习一般的学生也有益处。刚上大学时,高等数学我一度跟不上,总是云里雾里,后来抓紧学了一阵才有了些头绪。后来,我们学习的专业课如材料力学,结构力学等都用到了高等数学,才愈发感到它的重要性。现在大学数学选讲课,再一次让我面对高等数学,我的态度更加端正谨严。重温旧的知识点,在老师的点拨下,我能发现新的亮点,加深加固了我对知识点的理解和掌握。一题多解的解题过程,启发了我的解题思路,更是帮助我把许多知识点串联起来,增强了记忆。慢慢地,我从学习中找到了乐趣,对学习高等数学也有了信心,信心又激励着我不断探索,我发现学好一门课程树立信心很重要。

经过一学期的学习,我在高等数学的学习上也逐渐积累了一些经验体会。我感受到大学数学的学习和中学数学的学习是不样的。在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。然后像背单词一样,把一堆公式与结论死记硬背下来。哪种类型的题目用哪个公式、哪条结论,老师都已总结出来,我只需要将其对号入座,便可将问题解答出来。而现在,我不再有那么多需要识记的结论。唯一需要记住的只是数目不多的一些定义、定理和推论。老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。而高等数学课本中的每一个定理都有详细的证明。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。

学习高等数学还要注意一下几点。

我想学不好高数的大多数人都会说自己学习高数没有兴趣,学习高数确实枯燥乏味,面对的除了x,y,z别无他物。这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数。为什么这么说呢?因为我也认为学习高数是很枯燥的事,尤其是在凳子上一坐两个小时,听着教授的讲解,这更像是在解读天书。虽是这样说,但是学习高数的兴趣是自己激发的。就拿我来说吧,我曾经的数学学的并不好,高考时就因为数学没考好落榜,当时的心情可想而知,但来到大学看到高数课本时,刚开始自己也觉得很恐怖,因为在数学前边又加了“高等”二字,想想自己连“低等数学”都没学好,高等数学要怎么学呢?和大家一样,初来大学每天去占座,然后试着去认真听老师讲课,认认真真听了几节课下来,我对高数产生了“一点点”兴趣,觉得高数不过如此嘛,然后就越来越注重高数的学习。通过这个例子,我只想说对高数或者别的科目没兴趣那只是心理作怪,因此要克服学习高数的困难应该先克服自己的心理,具体应该怎样克服这种心理难关呢?我认为最重要的是要找回自己的自信心,不要以为自己就学不好高数,不要以为自己就不是学习高数的料,你没试着认真的学,你咋知道学不好呢,因此学好高数我认为第一点就是要有自信心和专心的思考,这才是学习好高数的基础。

1)课前预习:怎样预习呢?了解老师即将讲什么内容,相应的复习与之相关内容,把老师要讲的内容和与之相关的内容从头到尾看一遍,比如说老师要讲积分,那就把导数公式,微分复习一下,所谓的看并不是走马观花,要静下心来看,但看到预习的内容里有不懂的地方做个记号,老师讲课的时候肯定会讲到,因为高数老师可都是教授,学历和经验都很丰富。

须复习,不懂的地方多和同学交流一下,多交流学习高数的心得。这里所说的交流不仅仅限于同学,也可以和老师,至于交流学习高数的心得不一定也要找好学生,其实,学的稍后的同学有时他们的学习方式很好,只是没有重视和培养而已,因此不要小看任何人。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
数学选修课结课心得6篇(优质) 文件夹
复制