创新是推动社会进步和发展的重要动力,它可以引领我们走向成功。写一篇较为完美的总结,需要我们全面准确地反映自己在学习或工作中的表现和收获。小编精选了一些优秀的总结范文供大家参考,希望对大家的写作能有所启发。
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
必修一:1、集合与函数的概念(部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)。
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)。
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数。
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
(2)算法的特点:。
图片有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
图片确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
图片顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
图片不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
图片普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
2:程序框图。
(1)程序框图基本概念:
图片程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
图片构成程序框的图形符号及其作用。
程序框。
名称。
功能。
图片。
起止框。
表示一个算法的起始和结束,是任何流程图不可少的。
图片。
输入、输出框。
表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。
图片。
图片。
处理框。
赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
判断框。
判断某一条件是否成立,成立时在出口处标明“是”或“y”;不成立时标明“否”或“n”。
3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
算法结构。
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。秦九韶算法是重点,要牢记算法的公式。统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。
文档为doc格式。
任职贺词柳永条例了翻译民族守则答辩状:比喻句病假工作思路保证书礼仪了课件问候语国旗下了总结宣传周工作思路,形容词笔记慰问信了申请书辞职信座右铭的党员赠言员工申请决心书复习方法;制度工作打算方案简历的自查报告三曹评语工作经历。
有序则排无序组,正难则反排除它。
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家。
二项式定理。
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小。
概率与统计。
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争。
样本总体抽样审,独立重复二项分;
随机变《·》量分布列,期望方差论伪真。
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类。
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式。
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集n.或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
4.数列的图象。
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567。
项:45678910。
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集n.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程。
(1)标准方程,圆心,半径为r;。
(2)一般方程。
当时,方程表示圆,此时圆心为,半径为。
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,。
需求出a,b,r;若利用一般方程,需要求出d,e,f;。
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展.复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应变能力.
重视对基础知识的理解。
基础知识即高中数学课程中所涉及的概念、公式、公理、定理等.要求学生能揭示各知识点的内在联系,从知识结构的整体出发去解决问题,要求学生综合运用各种知识于一题.
针对热点,抓住弱点,开展难点知识专题复习.根据历年高考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练.每年的高考数学会出现一两道难度较大、综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的、没有普遍性的答题技巧,而主要是知识间的相互关系.
初中学生学数学,靠的是一个字:练!高中学生学数学,靠的也是一个字:悟!
1、做作业前先把笔记消化掉。
有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2、做完题要多反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。
要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。
有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。
1、商品的含义:商品是用于交换的劳动产品。
2、商品的基本属性——使用价值和价值。
使用价值概念:商品能够满足人们某种需要的属性。
(注意:有使用价值不一定是商品,商品必须有使用价值。)。
(2)商品的价值:凝结在商品中的无差别的人类劳动。
(注意:使用价值不同的商品之所以能交换,是因为都耗费了无差别的人类劳动)。
(3)商品是使用价值和价值的统一体,二者缺一不可。
使用价值是价值的物质承担者,没有使用价值的东西不是商品,没有价值的东西也不是商品。任何人不能同时兼得商品的使用价值和价值。消费者购买商品的目的是为了获得商品的使用价值,销售者是为了实现商品的价值。
(二)货币的本质。
1、货币的产生:货币是商品交换发展到一定阶段的产物;。
2、货币的含义和本质:
(1)含义:货币是从商品中分离出来,固定地充当一般等价的商品。
(2)货币的本质是:一般等价物。
(一般等价物:能表现其他一切商品价值,充当商品交换媒介的商品。)了解。
3、货币的职能。
(1)两个基本职能——价值尺度与流通手段。
a、价值尺度职能。
(1)含义:就是以货币作为尺度来表现和衡量其他一切商品价值的大小职能。
(原因:货币之所以能成为价值尺度,是因为货币也是商品,也有价值。)。
(2)价格与价值的关系:
所谓价格是通过一定数量的货币表现出来的商品价值,叫做价格。价格是价值的货币表现,价值是价格的基础。在其他因素不变情况下,商品价格与价值成正比。
(3)货币执行价值尺度职能时,只是观念上的货币,不需要现实货币。
b、流通手段:
(1)含义:货币充当商品交换媒介的职能,叫做流通手段。
(2)要注意流通手段与商品流通的区别。以货币为媒介的商品交换,叫做商品流通。流通手段强调的是货币在商品交换中的作用,商品流通强调的是商品如何交换。
(3)作为流通手段的货币必须是现实的货币,不能是观念上的货币。
(2)货币在发展过程中又有了贮藏手段、支付手段、世界货币的职能。
4、流通中所需要的货币量的计算公式。
流通中所需要的货币量=商品的价格总额(即待售商品的数量×价格水平)/货币流通速度。
(这表明:流通中所需要的货币量,同商品的价格总额成正比例,而同货币流通速度成反比例。)。
5、纸币的产生和发展:
(1)纸币是随着商品交换的发展而产生的。
(2)纸币的含义:它必须由国家(或某些地区)发行的、强制使用的价值符号。
(注意:纸币本身没有价值,它只是代替金属货币执行流通手段的职能。这里需要强调两点:一是由国家或特定地区发行的。二是国家强制使用的。纸币没有价值,之所以能代替货币行使流通手段,最主要原因就在于国家的强制力。)。
6、通货膨胀和通货紧缩。
(1)纸币是由国家发行的,国家有权发行纸币,但不能任意发行任何数量的纸币。纸币的发行量必须以流通中所需要的货币数量为限度。
(2)通货膨胀指的是经济运行中出现的全面、持续的物价上涨的现象。如果纸币的发行量超过流通中所需要的货币量,会引起物价上涨,影响人民的生活或社会经济秩序。
(注意:通货膨胀的产生原因很多,不仅仅与纸币的发行量太多有关,也与其他因素有关,如成本上升、总需求太大等。)。
(3)通货紧缩是一种与通货膨胀相反的经济现象,表现为物价全面、持续的下跌的经济现象。通常伴随着经济衰退。
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
符号化思想方法。
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
极限思想方法。
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。