组合图形的面积教学设计及反思 组合图形的面积教学内容分析六篇(模板)
文件格式:DOCX
时间:2023-04-09 00:00:00    小编:一颗冰栗子

组合图形的面积教学设计及反思 组合图形的面积教学内容分析六篇(模板)

小编:一颗冰栗子

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

组合图形的面积计算教学设计篇一

1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

2、培养观察、推理、归纳能力,体会转化思想的价值。

3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

探索并掌握梯形的面积计算方法。

理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

剪下书后的梯形

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、按算式画出相应的图形,说说自己是怎么想的?

算式:4×34×3÷2

2、复习梯形的有关知识:举一梯形。

说说梯形的基本特征及各部分名称。

■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。

二.交流共享

■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

【板块一】学习例6:

(1)出示例6:

用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个梯形有什么特点?

测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

(3)如何计算一个梯形的面积?

从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

得出以下结论:

这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

成一个

这个平行四边形的底等于

这个平行四边形的高等于

因为每个梯形的面积等于拼成的平行四边形面积的

所以梯形的面积=

(4)用字母表示梯形面积公式:

三、反馈完善

1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

2、完成p15练一练

一个梯形的面积与整个平行四边形的面积有什么关系?

3、p5动手做

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

平行四边形,学习目标,计算方法,自信心,教学

组合图形的面积计算教学设计篇二

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

s=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

练习十九第1、2题。

练习十九第3、4题。

组合图形的面积计算教学设计篇三

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积,数学教案-梯形面积计算。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

课件。

(一)复习旧知,做好铺垫。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

2、练习(出示)

口答下面各图形的面积。(单位:厘米)

(二)创设情景,提出问题

师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

合作要求:

(1)想一想:我们已经学过哪几种图形的面积公式?

(2)试一试:把梯形转化成已经学过的图形。(任选一种)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:s=(a+b)h÷2)

师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

(四)应用拓展,巩固知识。

师:下面我们来做练习吧。

1、一☆练习

a.课件出示:p75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

b.课件出示:p75做一做,由学生独立完成,集体订正。

c.课件出示:判断

1)两个梯形能拼成一个平行四边形。( )

2)平行四边形的面积是梯形面积的2倍。( )

让学生独立判断,并说明理由。

2、二☆练习

a.课件出示:

一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

b.课件出示:

我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

(顶层根数+底层根数)×层数÷2

想一想是什么道理,并算出图中圆木的总根数。

3、三☆练习

课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

学生独立解答,再交流。

(五)小结全课,结束教学

让学生讲讲这节课的收获,并布置作业。

有时间的话做“思考”

组合图形的面积计算教学设计篇四

《梯形的面积》是冀教版小学数学五年级第六单元第四课时的教学内容。本课是在学习了平行四边形和三角形面积计算公式探索过程的'基础上进行教学的。因此教材没有给出操作的材料和方法,而是直接给出一个梯形,提出“小组合用,探索梯形面积的计算方法”的要求,给学生提供小组合作的机会和更大的探索的空间,这一内容为后继教学“组合图形面积计算”作必要的铺垫。

学生已经认识了梯形,掌握了长方形、正方形、平行四边形和三角形面积的计算方法,同时学生已经有了平行四边形面积、三角形面积公式的探索过程的活动经验,了解了转化的数学思想,对于用两个完全一样的梯形拼成一个平行四边形,通过小组讨论及课前铺垫应该能够得能顺利完成。但对于选取从两腰的中点进行剪切、旋转的割补法学生未必能够想到,这应该是普遍存在的困难。

(一)教学目标

1.知识与技能:经历小组合作探索梯形面积公式、交流及应用的过程;掌握梯形面积的计算公式。

2.数学思考:在参与操作、观察、实践等数学活动中,学会独立思考,能清晰表达自己的想法,体会转化的数学思想。

3.问题解决:会利用梯形面积的计算公式解决实际生活问题;学会与他人合作交流;体验解决问题方法的多样性,发展创新意识。

4.情感与态度:获得小组合作学习的愉快体验,培养学生的团队精神,感受面积公式推导过程的条理性。

(二)教学重点:将梯形转化成学过的图形,分析、推导梯形面积计算公式。

(三)教学难点:理解用一个梯形割补成长方形的推导方法。

针对学生的知识基础主要采用小组合作的学习方式,探索两个完全一样的梯形可以拼成一个平行四边形,学生自主分析总结得出梯形面积的计算公式,同时课件辅助推导过程。另外,对于割补的方法,如果学生不能呈现教师要采用课件演示。

组合图形的面积计算教学设计篇五

1.使学生在理解的基础上探索并掌握梯面积计算公式的推导过程,能利用公式求梯形的面积。

2.掌握转化的思想和方法,进一步明白事物之间是相互联系,可以转化的。

剪刀,一个梯形,方格纸

一、复习欣赏、引入新课。

1.展示生活中的梯形,温故引新

师:这就是我们生活中的梯形。你能说出它各部分的名称吗?请你边说边用你的小手指一指.你还想知道什么?(出示课件)

生:面积

师:大家回忆一下,三角形的面积计算公式是什么?三角形的面积计算公式是怎么推导出来的?(ppt演示)

师:通过剪拼转化成我们学过的图形,找到他们之间的联系在推导。

2.出示课题

师:今天我们继续用转化的方法学习梯形的面积。(板书课题:梯形的面积)

师:谁知道梯形的面积公式?

生:梯形的面积=(上底+下底)×高÷2

生:s梯形=(a+b)×h÷2

二、提供材料、动手操作、公式推导。

1.猜想梯形面积公式可能的推导过程

师:谁愿意猜一猜梯形面积的计算公式可能是怎样推导出来的?

生1:用两个完全一样的梯形拼成平行四边形

生2:把个梯形分割成两个三角形

生3:把一个梯形转化成三角形来推导

生4:把一个梯形转化成平行四边形来推导

师:同学们对梯形面积的计算公式推导作了大胆的猜想,但光有猜想是不够的,我们还要进行探索研究,通过事实来说明。

2.提供材料,探索研究

师:刚才同学们提到用两个完全一样的梯形拼成平行四边形推导,但老师今天只准备一个梯形怎么办?(课件出示图一)

生:画一个同样的梯形进行推导

师:请先想象一下,然后拿出材料画一画,再推导面积公式(学生研究,然后汇报并白板操作)生:两个完全一样的梯形拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,梯形的面积是平行四边形面积的一半。

师:“(上底+下底)×高”表示什么?求梯形的面积为什么还要除以2?

生:(上底+下底)×高求的是平行四边形的面积,用两个完全一样的梯形拼成平行四边形,除以2求的是梯形的面积。

(2)用一个梯形推导梯形面积计算公式(学生再次研究,然后汇报并白板操作)

师:想办法把一个梯形剪或拼成平行四边形或三角形,再推导出面积公式。

生1:我们沿着梯形两腰中点的连线将梯形剪开(白板操作)转化成一个平行四边形。平行四边形的底等于梯形上底与下底的和,平行四边形的高只有梯形高的一半,(上底+下底)×高÷2,求出的是这个平行四边形的面积,也就是梯形的面积。所以梯形的面积=(上底+下底)×高÷2。

师:上底与下底的和表示什么?高÷2又表示什么?

生:上底与下底的和表示平形四边形的底,高÷2表示平行四边形的高。

师:那位同学是转化成三角形来推导的?

生:必须要沿着梯形一腰的中点与顶点的连线进行分割,剪下来才能拼成一个三角形。

师:上底与下底的和表示什么?

生:上底与下底的和表示三角形的底

生3:我们把梯形分割成两个三角形,方格纸中读出每个三角形的底和高,两个三角形面积和就是梯形的面积,再在方格纸中读出梯形上底,下底,高,从而推出梯形面积公式。

生4我们把一个梯形分割成一个平行四边形和一个三角形进行推导,也能推出梯形面积公式。

师:刚才同学们用了不同的方法推导出梯形的面积公式,这说明同学们很会思考,其实推导梯形的面积公式还有其他方法,我们还可以在课后继续研究。

【设计意图】让学生动手操作在实验中不断发现问题,在同伴交流中拓展自己的思维,哦不满足于一种方法的公式推导。展示多种方法,开拓学生的思维,沟通多种方法之间的联系和区别。

三、联系实际、巩固运用

(学生白板工具栏中数学选直尺量出梯形的上底4.7厘米、下底13.5厘米、高8.5厘米,代入梯形面积计算公式计算出梯形的面积。)

2.师:梯形在我们日常生活中用途很广泛,这是我国最大的三峡水电站,

我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

【设计意图】本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。

四、课堂总结、畅谈收获。

本节课你学到了哪些知识?你有什么收获?(引导学生从知识和方法两方面进行总结)【设计意图】这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

梯形的面积=(上底+下底)×高÷2

s=(a+b)h÷2

组合图形的面积计算教学设计篇六

我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。

提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。

首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。

第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。

第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。

一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。

二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。

三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制