最新公倍数与最小公倍数教学设计(大全13篇)
文件格式:DOCX
时间:2023-03-08 00:00:00    小编:远古野

最新公倍数与最小公倍数教学设计(大全13篇)

小编:远古野

道歉信是一种用于表达歉意和向他人道歉的书信。首先,要明确总结的目标和范围。希望以下总结范文对大家的写作有所帮助和指导,供大家参考和借鉴。

公倍数与最小公倍数教学设计篇一

文章摘要:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。

解:鸡蛋数量是一个比2、3、4、5、6的公倍数多1,而且恰好是7的倍数的数。

2、3、4、5、6的最小公倍数是60,但60+1=61不是7的倍数。60的2倍、3倍、4倍加上1以后都不满足条件。

只有60的5倍加1能被7整除,所以鸡蛋数是:

60×5+1=301(个)。

满足上述条件的数还有721,1141……但篮子里不可能装这么多鸡蛋。

例2孟老师负责运动会团体操的队形排列。他在操场上把参加团体操的同学排成10人一行,发现少1人;排成9人一行,还是少1人;排成8人一行,还是少1人;排成7人一行、6人一行……2人一行,每次总是少1人。孟老师生气了:真见鬼,怎么排都少1人!到底有多少人参加团体操?全校的学生都来了也不过3000人。

解:孟老师只要把自己算进去,那么10人一行也好,9人一行也好……,2人一行也好,都能恰好分完,就是说,正好是10、9、8、7、6、5、4、3、2的公倍数。这几个数的最小公倍数2520,减去孟老师,所以是2519人。

解:相会时必定是三人绕花园一周时间的公倍数,而最少时间为其最小公倍数。

[45,60,72]=360。

原处相会需经360÷60=6(小时)。

甲绕360÷45=8(周)。

乙绕360÷60=6(周)。

丙绕360÷72=5(周)。

解:人数是2、3、4的公倍数,其[2,3,4]=12,即至少12人,用盘。

12÷2+12÷3+12÷4=13(个)。

因为实际用盘是13的65÷13=5(倍),所以参加会的学生是。

12×5=60(人)。

此题解法很多,但都没有用求最小公倍数的方法来得简便。

求出10和8的最小公倍数,就是求出了至少要经过多少天,乙车间比甲车间多生产整整“一批零件”。

[10,8]=40200×40=8000(个)。

例6甲、乙两车同时从a至b,甲车每小时行48千米,乙车每小时行36千米。甲车途中停留4小时,结果比乙车迟到1小时,求a、b两地的距离。

此题的解法也很多,但都比不上求最小公倍数的解法巧妙。

由题意可知,从a至b,甲车比乙车少用4-1=3(小时),可用求最小公倍数法求出至少行多少千米,甲车比乙车少用1小时,那么,3个这样的多少千米就是a、b两地间的距离。

[48,36]=144。

144×(4-1)=432(千米)。

解:[50,40]=200。

这段距离为0.44×200=88(米)。

因为50与40的最小公倍数是200,而200÷50=4,200÷40=5,说明都转200周时甲环行了4段这样的(88米)距离,而乙环又则行了5段同样的距离,比甲多出一段这样的距离。

解:因为鸭头、鸭脚总数不超过500,而一只鸭的头和脚是3,所以鸭的总数不会超过200只。

鸭数用3除余1,用5除余3,用7除余5,它们的除数和余数都差2,加上2就一定能被这三个数整除。

[3,5,7]=105。

鸭数为105-2=103(只)。

公倍数与最小公倍数教学设计篇二

1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

2、通过输理、比较,建立相关概念的关系。

3、在游戏、应用中体验数学的趣味性。

一、基本练习

1、复习找因数、公因数的方法:

练习第一题。

学生填写后,说说你是怎么想的。巩固找公因数的方法。

2、复习约分的方法:

练习第二题先约分,再连线。

二、运用知识模型:

1、复习分数的意义、约分等知识的综合运用。

第3题。

让学生自己用分数表示,并交流自己的思考方法。

2、第4题。

先让学生找出分数,并说说自己的思考方法?

3、第5题。

本题开放性强,学生可以自由分割,并用分数表示。

三、思考题:

本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

四、实践活动:

先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

公倍数与最小公倍数教学设计篇三

本节课基本能实现预期的教学目标,让学生准确的理解“公倍数”与“最小公倍数”的概念和意义,也能够在学习方法上进行恰当的指导。在钻研教材、把握目标的基础上,充分利用材料组织教学,让学生深入浅出的进行学习课本的知识,教学过程也充分注意到了让学生独立思考、动手操作、自主探究知识,体现了“以生为主”的教学理念。

从作业的情况来看,学生对于用集合圈表示的方法学生错误很多,书写的要求要更规范一些。

公倍数与最小公倍数教学设计篇四

本节课,我充分体现这一新课程理念。上课开始我设计了一个互动游戏:

1.让学生按号数先进行报数。

2.请号数是4的倍数的同学站到教室左边。号数是6的倍数的同学站到教室的右边。(并把对应的号数填到黑板上)。

3.为什么12号、24号、36号和48号两边都要站呢?说说你发现了什么?如此为数学提供现实素材,积累直接经验获得对公倍数、最小公倍数概念的直接体验,积累数学活动的经验。

我在设计练习题时,先按书中的内容针对重点、难点设计一些综合性练习题,以适当重复来控制学生对知识的掌握。设计练习内容的难易程度都有,必做题起点稍低,让学生能通过独立思考和教师的正确辅导,一次次地去获得作业练习的成功;选做题有一定难度,对差生不做要求,可让优生产生兴趣尽力去完成,做到“优生吃得饱、差生吃得了、中游赶得上、下游丢不了”,真正让全班学生练中有乐、练有所获。

公倍数与最小公倍数教学设计篇五

教学内容:数学人教版五年级下册第88—89页。

知识目标:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。

能力目标:在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。

情感目标:会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。

教学重点:理解公倍数和最小公倍数的意义。

教学难点:利用公倍数、最小公倍数解决简单的实际问题。

教学准备:学具:若干张长3cm,宽2cm的长方形纸。

教学过程:

一、激趣引入,探究已知。

师:课前我们来做个报数游戏,看谁的反应最快。

师:(学生依次报数)请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次)这是为什么?(因为他们报到的号数既是3的倍数又是4的倍数)是这样的吗?咱们一起来验证一下。请起立两次的同学报数。(12、24)。

生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。这节课我们就来进一步研究倍数。

二、创设情景,动手操作。

1.老师家的墙面出现了问题,这几天正忙着维修呢。

(这是我买的一种墙砖)这种墙砖长3分米,宽2分米,我想用这种墙砖铺一个正方形(使用的墙砖都是整块)。

2.“如果用这种墙砖铺一个正方形(使用的墙砖都是整块)”,这句话是什么意思呢?同桌之间讨论一下。

3.那现在你明白老师的意思了吗?我们再来看看。

需要你们帮忙解决什么问题。(出示——正方形的边长可以是多少?)。

4.如果按老师的想法铺成的正方形的边长可以是多少呢?

正方形的边长可以是多少?同时呀,老师还想请同学们边操作,边思考这样的两个问题:

(1)拼出的正方形的边长是多少?

(2)正方形的边长与长方形的长、宽有怎样的关系?

(师):听明白了吗?小组之间开始合作吧。

5.汇报,展示:

学生汇报拼的结果。你是怎么拼的(上黑板展示)。说说你拼的正方形的边长是多少?(6)还有不同的拼法吗?拼成的正方形的边长又是多少?(12)如果老师现在给你足够多的时间和足够多的纸片那你还能拼出边长是多少的.正方形呢?这样的数多吗?有多少个?现在请仔细观察:拼成的正方形的边长与墙砖的长和宽有什么关系?(既是2的倍数有是3的倍数。)。

说的真好,那老师这里有一个疑问。能拼出边长是8的正方形吗?为什么?有困难的同学可以用小纸片铺铺看,谁来说说你的想法。(不能,因为8只是2的倍数,不是3的倍数。)。

6.小结。

刚才大家通过自己动手,知道了用这种规格的墙砖拼成的正方形的边长可以是6、12、18…,还知道了这些数既是2的倍数又是3的倍数。同学们真了不起,发现了里面含有的有关因数和倍数的知识,今天我们就进一步用有关因数和倍数的知识来解决“为什么正方形的边长是6分米、12分米…”

二、教学意义。

1.同学们说,老师来写,2的倍数有:3的倍数有:

那在这些数中哪些数既是2的倍数又是3的倍数?

像6.12.18…这些既是2的倍数又是3的倍数的数,我们就把它们叫做2和3的公倍数。(板书:2和3的公倍数)。

那最小的又是几呢?(6)那6就是这两个数的最小公倍数。

2.我们还可以用集合圈的方式来表示两个数的公倍数,

(出示:题单第一题)。

学生独立完成,填完后抽说说每一部分表示什么?

3.那现在要你解决“正方形的边长可以是多少?”还用不用摆一摆,画一画了,可以怎么办呢?(我们可以直接找两个数的公倍数)。

要解决“边长最小是多少”这个问题呢?又怎么办?(找两个数的最小公倍数)这就是我们今天学习的内容(板书课题:最小公倍数)。

现在谁再来说说什么叫公倍数?什么叫最小公倍数?(老师根据学生的回答来板书:几个数公有的倍数叫这几个数的公倍数,其中最小的一个数就是它们的最小公倍数。)。

1.现在那有信心找出两个数的最小公倍数吗?好,我们来试一试,(题单:第二题找6和8的最小公倍数)。

2.汇报。

谁来说说你是怎么找的?(我是先分别找出两个数的倍数,再找它们的公倍数。最后再找出它们的最小公倍数)。

3.抽学生板演。

4.刚才同学们通过自己动脑,找出了6和8的公倍数有24.48.72…。

那请大家仔细观察一下,它们的公倍数与最小公倍数之间有怎样的关系呢?(最小公倍数是公倍数的因数,公倍数是最小公倍数的倍数。)。

四、全课小结:这节课我们学会了什么?

五.练习。

同学们对公倍数和最小公倍数的知识掌握的不错,运用这些知识我们来进行一些练习:(题单:3、4、5题)。

关于找最小公倍数的方法还有许多种,我们下一节课再一起探讨找最小公倍数的方法。。

板书设计:

6和8。

几个数公有的倍数叫做这几个数的公倍数,

其中最小的一个数就是它们的最小公倍数。

公倍数与最小公倍数教学设计篇六

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

任务一理解最小公倍数的意义

任务二求两个数的最小公倍数

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学

任务一:

一、任务呈现

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12、24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:481216202428----4的倍数

爸爸的休息日:612182430-----6的倍数。

共同的休息日:1224-----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调4的公倍数就是妈妈的休息日

6的公倍数就是爸爸的休息日

4和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天?12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

二、那如何求最小公倍数呢?

任务二:

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出最大的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和74和8

3和56和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分。

公倍数与最小公倍数教学设计篇七

“最小公倍数”是一节概念课,是在学生掌握了倍数概念的基础上进行教学的,主要是为学习通分做准备,本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计与之前的最大公因数的教学有着相同之处,学习方法相同,并注意知识的迁移。

一、创设情境,关注学习数学知识的必要性。经过对倍数知识的复习后,通过创设一个用长方形墙砖铺墙面的问题情境,由实际生活抽象出概念,学生读题,明白题意后,便让他们四人一组用事先准备好的小长方形纸片去铺这个正方形。铺完后,都有所感悟,发现能铺完,这时问学生知道为什么能正好铺完吗?部分学生说正方形的边长正好是小长方形长的倍数,也是小长方形宽的倍数,是2和3的公倍数。接着让学生思考用这个小长方形还能铺满边长是几厘米的正方形,学生争先恐后的回答“12、18、24......,因为这些数既是2的倍数,也是3的倍数,也就是2和3的公倍数。”看到学生大都明白题意,我开始让学生猜测,可能铺满边长是9厘米、10厘米的正方形吗?为什么?孩子们都抢答说,不能,因为9和10都不是2和3的公倍数。孩子们最后总结出铺满的正方形的边长必须是两个数的公倍数,并说道所铺满的正方形的边长最小是6厘米。正好是长和宽的最小公倍数。从而真正感受到学习最小公倍数的意义。

二、运用知识迁移类推,发展能力。在此之前学生已经学习了找两个数的最大公因数的方法,接着引导学生根据找两个数的最大公因数的方法,大胆迁移、类推、探索出找两个数的最小公倍数的方法。从而获得能力上的发展。学生迁移出了四种找最小公倍数的方法。1、列举法,先列举出两个数的一些倍数,从中找出他们的公倍数,并从公倍数中找出最小公倍数;2、筛选法,先写出较大数的一些倍数,从中筛选出较小数的倍数,就是两个数的公倍数,其中最小的`一个就是他们的最小公倍数;3、分解质因数法,先把两个数分别用短除法分解质因数。因为用分解质因数法求两个数的最小公倍数与最大公因数有一定的差异,所以我以18和12为例重点介绍了这种方法,先让学生分别把两个数分解质因数,接着把18、12的最小公倍数36也分解质因数,让学生从最小公倍数36所分解的质因数中,找一找包含了18和12两个数中的哪些质因数?通过观察,学生发现最小公倍数36中既包含了12、18全部公有的质因数,也包含了两个数各自独有的质因数,也就是18和12的最小公倍数是两数所有公有质因数和各自独有质因数的乘积。针对每种找两个数的最大公因数的方法,学生边说边举例,并进行了适量的练习。

公倍数与最小公倍数教学设计篇八

《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

1.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

2.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学重点:公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。

在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本。让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

(一)故事引入感知概念

出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

根据学生的汇报,教师完成板书:

巴依老爷的休息日4、8、12、16、20、24、28

账房先生的休息日6、12、18、24、30

他们共同休息日12、24

最早的休息日12

【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

(二)加深理解总结方法

1.公倍数和最小公倍数的概念教学

最早的休息日(4和6的最小公倍数)12

【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

(三)巩固运用

再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?”问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

(四)解决问题深化理解

在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

公倍数与最小公倍数教学设计篇九

五年级第二学期第三单元“公倍数与最小公倍数”

2、会用不同的方法求两个数的最小公倍数。(例举法、分解质因数、短除法)。

3、会求存在互质和倍数关系的两个数的最小公倍数。

4、培养学生观察、迁移、概括的能力和主动探求新知的能力。

5、经历探求新知的过程,体验发现问题、解决问题的快乐。

理解公倍数与最小公倍数的意义,并会用短除法求两个数的最小公倍数。

理解两个数的公倍数与最小公倍数必须包含它们的公有质因数以及它们各自独有的质因数。

一.揭示课题:

1、说出下面每组数的最大公约数:

4和918和2413和3910和12。

2、我们学习了公约数和最大公约数的那些知识?

我们主要是从它们的含义、方法、特殊关系来进行探讨的。(板书)。

求两个数的最大公约数都有哪些方法?(板书:例举法、分解质因数、短除法)。

3、今天我们一起来研究两个数倍数之间的关系。

二、探求新知。

通过大家的自学,你认为这节课我们应该从哪些方面进行研究比较合理?

我们试着从这三方面来进行研究。

1、研究含义。根据你的理解,说说什么是公倍数?什么是最小公倍数?还有其他理解吗?下面我们通过具体的例子来进一步理解。

练习:3的倍数有:

5的倍数有:

3和5公有的倍数有:

练习:6的倍数9的倍数。

6和9最小的公倍数是(),6和9有没有最大的公倍数?为什么?

小结:什么叫公倍数?什么叫最小公倍数?

2、我们已经了解了什么是最小公倍数,那么怎样求最小公倍数呢?

以30和40这两数为例。说说你准备用什么方法求他们的最小公倍数?

(集体练习,指名板演。)。

(1)交流反馈例举法。

(2)交流反馈分解质因数法。

练习:

30=2×3×5m=2×2×3×5。

42=2×3×7n=2×3×3×5。

30和40的最小公倍数是()m和n的最小公倍数是()。

用分解质因数法怎样来求几个数的最小公倍数?

(3)为了简便,通常求最小公倍数用短除法。你是怎样理解这个短除算式的?

分别提问:各个数表示什么意思?怎样用短除法求几个数的最小公倍数?

练习:用短除法求24和36的最小公倍数。

对于求最小公倍数的方法你还有不理解或者还有什么建议?

小结:我们根据题目的难易,有时需要灵活的方法。

20和307和95和86和123和24。

交流反馈:

3、互质关系倍数关系(板书)。

具有互质关系的两个数,怎样求它们的最小公倍数?

具有倍数关系的两个数,怎样求它们的最小公倍数?

看书,我们的结论和书上的一样吗?

三、练习反馈。

1、任意选择两个数组成一组,并说出它们的最小公倍数。

13、2、4、15、18、6、100、25、9、1、12。

2、判断:

(1)两个数的最小公倍数一定大于这两个数。()。

(2)两个数的公倍数是无限的,而最小公倍数只有一个。()。

3、应用。

有一袋果糖,无论分6人,还是分5人,都正好分完,这袋果糖至少有多少粒?

四、总结评价。

通过自学和交流反馈,你有什么收获?

公倍数与最小公倍数教学设计篇十

本节课,我充分体现这一新课程理念。上课开始我设计了一个互动游戏:

1.让学生按号数先进行报数。

2.请号数是4的倍数的同学站到教室左边。号数是6的倍数的同学站到教室的右边。(并把对应的号数填到黑板上)。

3.为什么12号、24号、36号和48号两边都要站呢?说说你发现了什么?如此为数学提供现实素材,积累直接经验获得对公倍数、最小公倍数概念的直接体验,积累数学活动的经验。

我在设计练习题时,先按书中的内容针对重点、难点设计一些综合性练习题,以适当重复来控制学生对知识的掌握。设计练习内容的难易程度都有,必做题起点稍低,让学生能通过独立思考和教师的正确辅导,一次次地去获得作业练习的成功;选做题有一定难度,对差生不做要求,可让优生产生兴趣尽力去完成,做到“优生吃得饱、差生吃得了、中游赶得上、下游丢不了”,真正让全班学生练中有乐、练有所获。

公倍数与最小公倍数教学设计篇十一

一、联系实际理解数学。

教学前,我了解了学生在这节课前已有的知识背景,直接出示例题,让学生自己去尝试解答,然后汇报个性化的解题方法。在不断的交流汇报中,学生发现了有特殊关系的两个数的最小公倍数的求法。教师又让学生举实例进行验证。公因数只有1的两个数的最小公倍数是它们的乘积。有倍数关系的两个数最小公倍数是它们中的较大数。再应用这一发现进行试一试的练习。让学生经历了观察、思考、比较、反思等活动中,逐步体会到了数学知识的产生、形成与发展的过程。

二、教学中引导学生独立思考与合作交流。

在教学有特殊关系的两个数的最小公倍数时,教师让学生自己说一说每组数最小公倍数有什么不同?学生在经历求的过程后,又仔细观察,认真思考,汇报自己的想法,把被动的认知改成了主动探究。在教学求最大公因数和最小公倍数的异同时,教师出示了求3和4的最大公因数和最小公倍数的题目。让学生自己尝试后,小组讨论求两个数的最大公约数和最小公倍数的相同点和不同点。在同学之间的讨论、交流、探索中,学生发现了新知识的特点,又在不断的比较中,知道了新知识和旧知识之间的异同。就这样,在整理、归纳、交流的活动中丰富了数学活动的经验,提高了解决问题的能力,学生在这堂课中成为了学习的主人。

三、重视学生获取知识的过程。

学生获取知识过程花的时间可能也要稍多一些,但是这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助已有的知识经验用学过的一些方法来展示自己内部的思维过程。在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。

在学会了基本概念之后,引导学生运用列举法找几个数的公倍数和最小公倍数,在练习了完成之后,教师引导学生观察其中的规律提出猜想和假设,然后通过每个小组的验证得到规律,在这个过程中,学生不仅发现了特殊关系的两个数的最小公倍数的简便求法,更重要的是,培养了学生的能力和严谨的学习态度和初步的学习数学的方法,培养同学之间的协作精神。

四、存在不足。

在本节课的教学中,存在以下不足:

1、过渡语的使用教师进行了精心设计,但对于课堂教学没多大的激励作用,应用朴实的语言。

2、“说一说”的内容没必要让学生讨论,应让学生充分说,展示灵活的思路。

3、“议一议”的内容时间不够充分,没有让学生真正深入地讨论。

本节课的遗憾就是。没有预料到学生会对“剪成同样长短的跳绳,不能有剩余跳绳”这个句子理解出现偏差,浪费了一些时间,但在课堂上看到了学生思维火花的闪现,感受到了他们思维的碰撞,教学目标也因此而有效达成。

公倍数与最小公倍数教学设计篇十二

1、新教材中对最大公因数和最小公倍数要求较以往是大大的降低了。这里只要求学生用列举的方法找出最大公因数和最小公倍数,对一些特殊的数组能找到规律,寻求特殊的解法。

2、注意新教材中的数都很小,不复杂,要求找的最小公倍数不能超过100。

3、关于短除,是给学有余力的学生介绍的,因为学生学习时缺乏相应的知识基础,如质因数、分解质因数的概念,所以教师在讲解时要将这部分知识简单交代一下,不然学生无法理解,特别是理解这样做的道理,如若不然,学习只能是流于形式。关于教与不教的话题,我认为还是要教一教,给孩子一个一般的方法介绍,对他们今后学习有益。

4、我觉得因为数都比较小,可以教学生一些简单的求法。如“大数翻翻法”就很好,其实求最大公因数也可以用“小数缩倍法”,即将小数依次除以1、2、3、4等,看是不是大数的因数,如果是就是它们的最大公因数。

公倍数与最小公倍数教学设计篇十三

求最小公倍数的方法是整除部分的难点,它抽象不易理解,且与学生已有的知识储备联系较小。在以往几轮的教学中,为达到让学生明白求最小公倍数的算理的目的,我尝试了几种不同的教学思路,但效果都不太理想,于是今年我又进行了深入地探究,真的有所顿悟,一节课下来,从孩子们兴奋的表情中,我感到许久未曾有过的轻松,多年的难题终于解决了。

课后,我把教学流程在脑子里又重新过了一遍,并与以前的教学方法进行了比较,发现解决问题的症结只有一点————让学生真正了解两个数的最小公倍数与这两个数质因数的关系。为此,教学求最小公倍数的方法时,我采用了以下几个步骤:

首先,学生小组讨论18和30的最小公倍数与18和30有什么关系,通过共同交流,发现绝大多数同学思维都停滞在最小公倍数一定是这两个数的倍数的阶段上,于是我充分发挥了教师的主导作用,让学生把18和30分解质因数,并引导学生观察18=2×3×3,30=2×3×5,讨论交流要求的最小公倍数与18和30的质因数有没有关系,给学生充足的时间,因为学生已经知道最小公倍数是18的倍数,而18是2、3、3相乘得到的,所以有学生发现18和30的最小公倍数一定包含18的质因数2、3、3的乘积,同理也包含30的质因数2、3、5的乘积,接着提问:这6个质因数相乘后是最小公倍数吗?为什么?学生通过交流发现公有质因数2、3重复乘了一次,这样得到的公倍数就不是最小的,要想最小,只须用2×3×3×2×3×5,即用公有质因数2、3乘各自独有质因数3、5就是最小公倍数。这样在老师的引导,自己的观察、思考、发现的专注探索中学生基本上理解了求两个数最小公倍数的方法,思维得到了发展,教学难点迎刃而解,同时为后续的实际计算做好了铺垫。

通过本节课的教学,我对教师的主导作用有了新的认识——承认数学教学过程中学生应有的主体地位,并非否认数学教师在教学过程中的重要作用。因为学生的数学思维不能自发的形成,特别是抽象性较强的内容。任何创造活动都必须以一定的学习作为必要的基础。作为教师,必须深入了解学生真实的思维活动,这样才能根据学生已有的数学知识进行启发和促进。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制