2023年等腰三角形的所有知识点 等腰三角形知识导图优秀
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
等腰三角形的所有知识点等腰三角形知识导图篇一
(1)参与探索发现,领略知识形成过程
学生过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的方法,获取知识。
由性质定理的,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
1.使学生掌握定理及其推论;
2.掌握等腰三角形判定定理的运用;
直尺,微机
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
(简称“等角对等边”).
已知:如图,△abc中,∠b=∠c.
求证:ab=ac.
教师可引导学生分析:
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.
推论2:有一个角等于60°的等腰三角形是等边三角形.
要让学生自己推证这两条推论.
3.应用举例
已知:∠cae是△abc的外角,∠1=∠2,ad∥bc.
求证:ab=ac.
证明:(略)由学生板演即可.
补充例题:(投影展示)
1.已知:如图,ab=ad,∠b=∠d.
求证:cb=cd.
证明:连结bd,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
证明: de//bc(已知)
,
be=de,同理df=cf.
ef=de-df
ef=be-cf
小结:
(1)等腰三角形判定定理及推论.
(2)等腰三角形和等边三角形的证法.
七.练习
教材 p.75中1、2、3.
八.作业
教材 p.83 中 1.1)、2)、3);2、3、4、5.
九.
等腰三角形的所有知识点等腰三角形知识导图篇二
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
中线及顶角平分线三线合一的性质,并能运用
它们进行有关的论证和计算。
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学重点 等腰三角形的性质定理及其证明。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
本节课我们一起研究——等腰三角形的性质。
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
[结论]等腰三角形的两个底角相等。
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[辨疑]一般三角形是否具有这一性质呢?
[电脑演示2]
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(1)∵ab=ac,ad⊥bc,
∴∠_=∠_,_=_;
(2)∵ab=ac,ad是中线,
∴∠_=∠_,_⊥_;
(3)∵ab=ac,ad是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
a组:根据等腰三角的形性质定理
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
b组:根据等腰三角形的性质定理
(3)等边三角形的三个内角有什么关系?各等于多少度?
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
a组口答练习
b组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
a组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
∠bad、∠cad的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
a组口答
b组独立解答.
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:p1——p3
2、课本p5 想一想
教案设计说明
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
等腰三角形的性质
等腰三角形的所有知识点等腰三角形知识导图篇三
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
中线及顶角平分线三线合一的性质,并能运用
它们进行有关的论证和计算。
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学重点 等腰三角形的性质定理及其证明。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
本节课我们一起研究——等腰三角形的性质。
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
[结论]等腰三角形的两个底角相等。
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[辨疑]一般三角形是否具有这一性质呢?
[电脑演示2]
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(1)∵ab=ac,ad⊥bc,
∴∠_=∠_,_=_;
(2)∵ab=ac,ad是中线,
∴∠_=∠_,_⊥_;
(3)∵ab=ac,ad是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
a组:根据等腰三角的形性质定理
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
b组:根据等腰三角形的性质定理
(3)等边三角形的三个内角有什么关系?各等于多少度?
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
a组口答练习
b组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
a组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
∠bad、∠cad的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
a组口答
b组独立解答.
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:p1——p3
2、课本p5 想一想
教案设计说明
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
威海市经济技术开发区皇冠中学 丛燕燕
2000年4月
等腰三角形的性质
教 案
威海市经济技术开发区皇冠中学
丛燕燕
二o o o年四月
相关专题: 初中数学
专题信息:
等腰三角形的所有知识点等腰三角形知识导图篇四
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
(1)发现问题
(2)解决问题
(3)加深理解
1.掌握定理的证明及这个定理的两个推论;
2.会运用证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
6.渗透对称的数学思想,培养学生数学应用的观点;
1、 性质定理的发现与证明
(1)投影显示:
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
学生口述证明过程.
指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
求证:bd=ce
证明:作af⊥bc,,垂足为f,则af⊥de
∵ab=ac,ad=ae(已知)
af⊥bc,af⊥de(辅助线作法)
∴bf=cf,df=ef(等腰三角形底边上的高与底边上的中线互相重合)
∴bd=ce
求证: p=
证明:连结oc
在△bpd和△bcd中
在△adc和△bcd中
因此, p=
例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
求证:bf=cf
证明:∵bd、ce是△abc的两条中线,ab=ac
∴ad=ae,be=cd
在△abd和△ace中
∴△abd≌△ace
∴ 1= 2
在△bef和△ced中
∴△bef≌△ced
∴bf=fc
5、反馈练习:
出示图形及题目:
将实际问题数学化,培养学生应用能力。
6、课堂小结:
引导学生小结
(1)、
(2)、等边三角形的性质
(3)、文字证明题的书写步骤
7、布置作业 :
a、 书面作业 p96#1、2
b、 上交作业 p96#4、7、8
c、 思考题:
求证:ef⊥bc
证明 : 作bc边上的高am,m为垂足
∵am⊥bc
∴∠bam=∠cam
又∵∠bac为△aef的外角
∴∠bac =∠e+∠efa
即∠bam+∠cam=∠e=∠efa
∵∠aef=∠afe
∴∠cam=∠e
∴ef∥am
∵am⊥bc
∴ef⊥bc
等腰三角形的所有知识点等腰三角形知识导图篇五
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
(1)发现问题
(2)解决问题
(3)加深理解
1.掌握定理的证明及这个定理的两个推论;
2.会运用证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
直尺,微机
:问题探究法
1、 性质定理的发现与证明
(1)投影显示:
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
学生口述证明过程.
教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
求证:bd=ce
证明:作af⊥bc,,垂足为f,则af⊥de
∵ab=ac,ad=ae(已知)
af⊥bc,af⊥de(辅助线作法)
∴bf=cf,df=ef(等腰三角形底边上的高与底边上的中线互相重合)
∴bd=ce
求证: p=
证明:连结oc
在△bpd和△bcd中
在△adc和△bcd中
因此, p=
例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
求证:bf=cf
证明:∵bd、ce是△abc的两条中线,ab=ac
∴ad=ae,be=cd
在△abd和△ace中
∴△abd≌△ace
∴ 1= 2
在△bef和△ced中
∴△bef≌△ced
∴bf=fc
5、反馈练习:
出示图形及题目:
将实际问题化,培养学生应用能力。
6、课堂小结:
教师引导学生小结
(1)、
(2)、等边三角形的性质
(3)、文字证明题的书写步骤
7、布置作业 :
a、 书面作业 p96#1、2
b、 上交作业 p96#4、7、8
c、 思考题:
求证:ef⊥bc
证明 : 作bc边上的高am,m为垂足
∵am⊥bc
∴∠bam=∠cam
又∵∠bac为△aef的外角
∴∠bac =∠e+∠efa
即∠bam+∠cam=∠e=∠efa
∵∠aef=∠afe
∴∠cam=∠e
∴ef∥am
∵am⊥bc
∴ef⊥bc