数据挖掘论文选题 数据挖掘论文实用
文件夹
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1.1数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
1.2数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
作者:周永杰单位:河南警察学院信息安全系
数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。
随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。
数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。
目前主要的商业数据挖掘系统有sas公司的enterpriseminer,spss公司的clementine,sybas公司的warehousestudio,minersgi公司的mineset,rulequestresearch公司的see5,ibm公司的intelligent,还有coverstory,knowledgediscovery,quest,explora,dbminer,workbench等。
2.1数据分类
数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。
2.2数据关联分析
数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。
2.3预测
预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的回报。
数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。
4.1运用关联规则分析教师的年龄对学生考试成绩的影响
数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的教学效率更高,作用更强。
还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。
4.2采用分类算法探讨对考试成绩有影响的因素
数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:
4.2.1数据采集
这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)
4.2.2数据预处理
(1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。
4.2.3利用数据挖掘技术,得出结论
通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。
数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。
[1]胡玉荣。基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[j]。荆门职业技术学院学报,20xx,12(22):12.
[2][加]韩家炜,堪博(kamberm.)。数据挖掘:概念与技术(第2版)[m]范明,译。北京:机械工业出版社,20xx.
[3]王洁。《在线考试系统的设计与开发》[j]。山西师范大学学报,20xx(2)。
[4]王长娥。数据挖掘技术在教育中的应用[j]。计算机与信息技术,20xx(11)
根据20xx年4月国家教育部等五部关于印发《职业学校学生实习管理规定》的通知(教职成[20xx]3号)精神,针对旅游管理专业顶岗实习企业的实际情况以及顶岗实习现状,多角度分析新《职业学校学生顶岗实习管理规定》(以下简称新《规定》)对旅游管理专业顶岗实习的新要求,探索可操作的改进办法,为旅游管理专业实施顶岗实习教学课程提供借鉴和帮助。
1.旅游管理专业顶岗实习实施现状
(1)实习企业较多,大部分企业需求人数少,实习生分布零散,跟踪管理难度大。
(2)由学校安排实习的,大多是由学校和实习企业签订双方协议,实习生签阅《实习生管理守则》。
(3)中职学校旅游管理专业顶岗实习学生大多未满18周岁。
(4)实习评价体系不完善,对实习生的考核主观成分多,量化标准少。
(5)实习期仍以学生平安险作为学生意外伤害保险,尚未为学生购买专门的实习责任险。
2.新《规定》对顶岗实习的影响及改进方法
(1)新《规定》再次强调对实习过程的全程指导,并明确提出,对自行安排实习的学生也要进行跟踪管理(新《规定》第七条、第八条)。而旅游管理专业实习企业特别是旅行社,企业多,规模小,需求人数少,实习生分布零散,甚至一个企业只有一个实习生,管理和指导难度大。调查资料显示,旅游专业实习企业中90%是旅行社,而实习生中只有50%在旅行社实习。这种情况实习指导教师如果要实现对每个实习生的指导管理,那么大部分时间都在外跑实习点,学校对专业教师的教学任务、科研任务及其他工作都很难完成。针对这一现状,结合新《规定》要求,可从以下方面着手改进:
1)建立校企生联动实习管理制度。在学校数字化平台增加实习管理模块,将实习操作流程、标准分单元录入模块内,实习生定期在平台上提交单元作业,企业指导教师和学校指导教师定期在平台上提交实习生单元成绩,最后的实习总成绩由单元成绩按比例汇总而成。这样既可参与和掌控实习过程,又能优化实习考核体系,增加量化标准。如数字平台无法立即实施,可先采用电子文档或纸质文档方式。
2)实习面试结束后,组织召开实习指导教师动员会,由学校安排的指导教师和各企业安排的指导教师参加,共同学习和调整实习计划、操作标准、达标考核、指导流程等。
3)实习收尾阶段,组织召开实习总结会,对实习工作进行交流分享,对实际工作中遇到的问题提出改进建议,为即将开展的新一轮实习工作做好铺垫。
(2)新《规定》第十二条、第十三条要求,顶岗实习前学校、企业、学生须签订三方协议,这对制约企业、约束学生有了明确依据。旅游企业淡旺季明显,一些企业到了淡季就将学生解聘;学生实习中无法适应而中途离职的也时有发生,所以协议内容除新《规定》列示内容外,还应增加实习生到岗后应遵守的相关管理制度、学生违反规定的处理办法等内容。
(3)新《规定》第十四条要求,未满18周岁的学生参加顶岗实习,须由监护人签阅知情同意书。大部分中职学校学生在实习时都未达到该年龄标准,因此中职学校在实习前应按户口登记年龄进行一次筛选,将“顶岗实习学生监护人知情同意书”以统一格式发放给未满18周岁学生,并告知监护人,请监护人签阅。“知情同意书”交学校后方可参加实习面试。
(4)新《规定》第三十五条要求,职业学校或实习单位应为实习学生投保实习责任保险。实习责任险是指学生在实习期间,因学校的管理疏忽对学生造成的身体、心理伤害应由学校承担责任的保险。据调查,保险公司目前尚未推出专门的实习责任险,但可先为实习生购买一年期限的意外险。但意外险与实习责任险在投保范围、价格等方面还有差异,所以,职业学校也应同时与保险行业接触,积极推进实习责任险的设计出台。
总之,旅游管理专业顶岗实习在实施过程中还存在一些问题和困难,如企业与学校的需求差异、旅游行业淡旺季与实习期的时间矛盾、实习生生活管理和心理疏导问题等,有待在《新规定》的要求和指导下,与企业深度合作,探索出一套有效的、可操作的顶岗实习实施标准。
摘要:大数据和智慧旅游都是当下的热点,没有大数据的智慧旅游无从谈“智慧”,数据挖掘是大数据应用于智慧旅游的核心,文章探究了在智慧旅游应用中,目前大数据挖掘存在的几个问题。
关键词:大数据;智慧旅游;数据挖掘;
1引言
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智慧旅游应运而生。大数据作为当下的热点已经成了智慧旅游发展的有力支撑,没有大数据带给的有利信息,智慧旅游无法变得“智慧”。
2大数据与智慧旅游
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。20,江苏省镇江市首先提出“智慧旅游”的概念,虽然至今国内外对于智慧旅游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智慧旅游中的作用出发,把智慧旅游描述为:透过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象带给服务[2]。这必须义充分肯定了在发展智慧旅游中,大数据挖掘所起的至关重要的作用,指出了在智慧旅游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智慧旅游最终所需要的是利用挖掘所得的有用信息。
3大数据挖掘在智慧旅游中存在的问题
,我国提出用十年时间基本实现智慧旅游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智慧旅游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了超多数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
3.1信息化建设
智慧旅游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。透过这些平台,已基本能掌握跟游客和景点相关的数据,能够实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及超多部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
3.2大数据挖掘方法
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景十分广阔,但是应对超多的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,透过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法透过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
3.3数据安全
,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人保密和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人保密更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
3.4大数据人才
大数据背景下的智慧旅游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智慧旅游的构建还缺乏超多人才。
4解决思路
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘就应被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智慧旅游大数据人才。
参考文献
前言
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
1客户关系管理
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。crm的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的crm和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的`客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
2企业经营定位
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
3客户信用风险控制
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
客户信用风险管理应用数据挖掘技术的优势:
(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。
为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。
4在网络营销中进行数据挖掘的优势
网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
1.维护原有客户,挖掘潜在新客户
网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。
2.制定营销策略,优化促销活动
对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。
3.降低运营成本,提高竞争力
网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。
4.对客户进行个性化推荐
根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。
5.完善网络营销网站的设计
参考文献
1冯英健著,《网络营销基础与实践》,清华大学出版社,1月第1版
2.,and.sky-shairoh,esinknowledgediscoveryanddatamining.aaai/mitpress,menlopark,ca.:
摘要:人类利用图书馆产生信息活动时所表现出的最基础、最平常、最通用的一种关系,便是用户资源和图书馆之间的关系。从这种关系出发,分析嫁接起这一简单联系的规律,便是数据挖掘技术。本文认为对图书馆用户资源分析研究应以数据挖掘技术为逻辑起点,从云计算、信息共享、数据排查、智能搜索、大数据存储等对图书馆用户资源进行整合和建设。应对信息资源日益丰富的这天,数据挖掘技术对管理图书馆信息资源技术带给了巨大便利。
关键词:数据挖掘;用户资源
数据挖掘,即数据系统中的信息发现。随着计算机技术,个性是云计算、大数据记忆技术的快速发展,传统的手动查找信息模式被大数据智能检索替代。数据挖掘技术广泛应用于市场、工业、金融行业、科学界、互联网行业以及医疗业。数据挖掘技术在图书馆的应用,能够将海量的用户资源进行聚类、关联、整合,能够对用户搜索记录、图书流通记录、用户借阅信息等数据进行精确预判,发现一些隐蔽的联系,为图书馆采购图书、淘汰文献资料带给科学推荐,也能够为用户带给个性化订阅服务,创新用户服务模式,为图书馆建设整个信息网络带给有力支撑。
1大数据下的图书馆用户资源特征
图书馆用户资源是透过数字技术进行组织和管理的:(1)经过数据关联分析,把数据库中存在的两个或两个以上用户之间的相同性提取出来,提高支持度和说服力;(2)把用户信息按照相似性归纳成几个类别,建立宏观概念,发现其间的相互关系;其次定义这些相互关系,概念产生以后,即等同于这些相互关系的整体信息,用于建构分类规则或者数据模型;其次利用以上数据找出变化规律,对此规律进行模型化处理,并由数据模型对未知信息进行预判;(3)把用户资源进行时序排序,检索出高重复率的模型;(4)进行偏差比对,检查数据之中的异常状况。图书馆利用超多的用户访问信息获取用户兴趣,发现用户群体,为不同的群体定制信息,还能够建立一个共享信息平台,让不同用户建立网络交流。
1.1数据量大并且分布更广
大数据形势下,图书馆能够获取的用户资源不仅仅限于用户个人信息和搜索记录,也包括档案、学术研究、教学模式、用户评价和反馈等,数据丰富。同时,数据分布广泛,在互联网时代,可从图书馆应用系统、数据系统记录以及各种网页、移动终端的信息获取,显示出用户资源的分散性。
1.2数据资料多元化,形式灵活化
数据系统里的存储方式不同,服务器不同,系统开发平台不同,致使许多用户资源无法交流互换。图书馆用户资源有半模型化、模型化和非模型化之分。传统的图书馆用户资源中,用户只是图书资源的使用者,与图书馆之间只是点对点单线互动,用户之间不存在交流,而在大数据网络平台下,用户之间能够建立资料共享互动平台,使得用户资源的资料更加多元化。
2图书馆用户资源利用
2.1有助于利用数据挖掘技术建立用户资源图书馆
用户资源图书馆具备信息量大的特点,用户可获得各方各面的信息,且从服务的个性化和全方位化而言,图书馆可根据社会热点或用户需求定制服务。一方面,建立用户资源图书馆,使各类用户信息在同一界面统一呈现,方便用户的选取和检索。另一方面,利用数据挖掘技术建立的用户资源图书馆,服务器众多,具有较强的计算潜力和存储潜力,拥有较高的数据处理潜力,能同时容纳多数用户。因数据量大所导致的硬件费用和后期运行费用剧增,可透过构建用户资源图书馆平台以及应用服务得到解决。为应付不断提高的用户资源存储方面的压为,目前亟需的就是投入超多资金以扩容存储设备,无疑,建立用户资源平台能够解决此问题。
2.2加速图书馆资源的数字化
强大的互联网呈现功能和用户信息保存的可靠性功能,用户资源存储的复杂性问题可得到很好的解决。其次,数据挖掘技术对于资源整合方面具有优势,透过分布式的存储模式整合超多信息资源带给给用户检索。不同的数据之间的互相操作以及全方位的互联网服务得以实现,很好的解决了资源重复建设的问题。因此,利用数据挖掘使得图书馆资源数字化具备可行性。从这个好处上来看,资源的馆藏数字化将会加快发展,而不只是图书书目的剧增。
2.3降低人力资源成本,使图书馆各类资源得以整合和优化
随着各类用户资源利用步伐的加快,加之依靠因特网的用户对服务的可行性和效率性要求更高,超多不同体系的服务器布置在机房,系统维护人员的压力也相应増大。透过数据挖掘技术,可有效进行资源整合和优化,无需透过人力进行。
2.4有利于分析用户心理和提升用户体验
数据挖掘技术能够利用用户资源计算出用户模型,这是研究用户需求、偏好、行为的一种常规方式,一般认为用户模型是对用户在某段时间内相对稳定的信息需求的记录。用户模型反过来对获取用户资源有十分重要的作用,建构用户模型,能够使图书馆更加精深、准确地掌握当前用户资源。透过对用户资源的处理来预测用户需求,进而到达持续提高服务质量和用户满意度的目的。一方面,预判用户心理是利用图书馆用户资源更加深入的表现。随着用户环境与图书馆环境的不断变化,这种预判力覆盖范围已经不单单是用户信息行为的某个过程或某几个过程,相反,用户心理能够对用户需求的强弱、层次、方向产生极为重要的影响,同时也能够对获取用户资源全部过程产生重要影响。另一方面,最先研究用户体验研究当属企业营销活动,主要用来研究用户与企业、产品或服务之间的互动。数据挖掘技术能够更精准预测用户的实际感受,透过研究用户情感体验与用户行为动作,提高用户的满意度,满足用户需求。
3结语
在数据大爆发时代,重视图书馆用户资源,透过多渠道、多方式汇聚用户资源,采用数据挖掘、数据归档分析等技术,掌握用户资源特征,有助于图书馆精准定位用户群体,对调整图书馆运营策略有重要前置作用,更能创新图书馆服务的资料和形式,实现图书馆资源的有效利用。
参考文献
[1]陈文伟等.数据挖掘技术[m].北京:北京工业出版社,.
[2]郭崇慧等.北京数据挖掘教程[m].北京:清华大学出版社,.
[3]徐永丽等.网络环境中用户信息需求障碍分析[j].图书馆理论与实践,.
随着我国的旅游业的迅猛发展,旅游产业正迈向国际化的轨道,传统旅游业积累的海量数据,没有被有效利用,资源被极大浪费。将数据挖掘引入到旅游产业是大势所趋。当前数据挖掘在旅游信息化建设中的应用与研究情况主要集中在高校理论界的研究,大多数研究仅仅是学术研究,真正运用到旅游行业的文章多是从某个具体的方面出发,针对个别应用进行数据挖掘的融合。笔者主要研究决策树方法在旅游信息化建设中的应用。目前,决策树算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z统计算法、并行决策树算法和sprint算法等。不同算法在执行效率、输出结果、可扩容性、可理解性、预测的准确性等方面各不相同。总的来说,这么多决策树算法各有优缺点,真正将数据挖掘运用到整个旅游信息化建设中还有很多问题需要解决。
数据挖掘中常用的基本分类算法有决策树、贝叶斯、基于规则的算法等等。其中,决策树是目前主流的分类技术,己经成功的应用于更多行业的数据分析。在关联规则挖掘研究中,最重要的是apriori算法,这个算法后来成为绝大多数关联规则分类的基础。聚类算法也是数据挖掘技术中极为重要的组成部分。与分类技术不同的是,聚类不要求对数据进行事先标定,就数据挖掘功能而言,聚类能够可以针对数据的相异度来分析评估数据,可以作为其他对发现的簇运行的数据挖掘算法的预处理步骤。各种算法分类模型建立有所不同,但原理是大致相同的。笔者考虑决策树算法结构简单,便于理解,且很擅长处理非数值型数据,建模效率高,分类速度快,特别适合大规模的数据处理的优点,结合旅游产业数据特点,故作重点分析。
旅游业数据挖掘系统的基本特点如下:统计旅游兴趣;购物消费趋向;推荐其感兴趣的旅游景点;在后台管理中,通过决策树算法对游客数量、平均年龄、景点收费、游客来自地区等进行分析总结,为旅游消费者和旅游管理者提供服务:为消费者提供吃住行购娱乐天气各方面信息查询、机票、车船票、酒店、景区门票、餐饮等方面的预定与现金支付、第三方支付、消费者评价、在线咨询等方面的便利、快捷服务。为管理者提供推荐、游客管理、线路管理、景点管理、特色服务管理、机票管理、在线咨询管理、旅游客户关系管理等服务,提高整体服务效率和水平。
旅游业信息管理系统包括游客信息管理与游客信息分析两个子模块。根据系统日常运行出现的问题及时对系统进行维护,如添加或者删除某个模块功能,系统整体运行速度的更近等。系统运用数据库层、持久化层、业务逻辑层、表示层四层体系结构,主要利用id3算法达到旅游数据信息的快速、准确分类。考虑了游客与酒店之间的关系、游客与旅游路线之间的关系、游客与旅游景点之间的关系、游客与机票、车票之间的关系、管理员与游客之间的关系、逻辑结构设计。程序之间的独立性增加,易于扩展,规范化得到保证的同时提高了系统的安全性。详细功能设计包括:用户登录、用户查询、预定及支付、后台管理、旅游客户管理和数据分析等方面。本系统中主要运用java语言就行逻辑上的处理。系统主要使用struts2和hibernate这两个框架来进行整个系统的搭建。其中struts2主要处理业务逻辑,而hibernate主要是处理数据存储、查询等操作。系统采用tomcat服务器。系统模块需要实现酒店推荐实现、景点推荐实现、天气预报实现、旅游线路实现、特产推荐、数据分析展现功能、报表数据获取、景区客流量变化分析实现等。需要进行后台信息管理等功能测试以及时间测试、数据测试等性能测试。
在对数据挖掘的基本方法与技术进行总结的基础上,结合当今数据挖掘的发展方向和研究热点,可以发现旅游业数据挖掘算法系统有待进一步完善之处:订票系统尚待完善。界面美化需要进一步改进。数据表之间的结构关系需要优化,以提高数据处理能力和效率。数据挖掘工具及算法有待精细化改进。
作者:朱晖 单位:河南职业技术学院
由于受传统教学观念的束缚,长期以来,我国学生处于被动、缺少自主探索、合作的地位。在很多学科的学习上,往往也都是以教师讲述为主,学生被动接受。在当前的旅游管理教学中,这种传统教学模式的身影仍然时常课件,旅游管理课堂基本上也是“以教师为主,以教材为主,以课堂为主”的模式。这种模式主导下的旅游管理教学,不仅与时代发展脱轨,更对培养全面发展人才目标相悖。而体验教学则恰恰相反,其教学操作的核心是关注学生体验、感悟和实践的过程,并在此过程中,改变学生的学习方式,丰富学生的学习经历和体验,以促使其知识、能力、价值观等的培养和统一。由此可见,在旅游管理中开展体验式教学意义重大。
体验式教学对培养学生学习兴趣,提升旅游管理课程教学效率至关重要。那么,在旅游管理专业学生实习活动中,该如何实施体验式教学呢?作者认为可以从“模拟导游”、“案例教学”以及“优化设计”这三个方面加以考虑:
2.1开展模拟导游活动,强化学生情感体验
对于旅游管理专业学生而言,导游身份应该不会陌生,并且有很大一部分的学生在毕业之后,都将从事导游工作。在开展体验式教学活动中,模拟导游活动不失为一种有效的体验方式。这里所说的模拟导游,主要指的是模拟即景导游。众所周知,即景导游需要具备多种能力,既需要具备充足的知识储备,又需要能够创造丰富的旅游情境,给予游客丰富的情感体验。尤其是在那些历史文化浓厚的景点担任解说时,旅游情境的创设必不可少,其是激发游客情感体验,引发游客情感共鸣的重要手段。比如在对“幽州台”这一景点的解说时,如果导游没有具备足够的理论知识,不懂得这个看似简单的台子就是古人陈子昂的《登幽州台歌》中的幽州台,游客就无法理解这位怀才不遇的诗人在写此诗时那忧伤、悲愁的心绪,也无法真正欣赏这个景点的人文内涵。这就是情境渲染的力量。是否能够有效地渲染出情境,加强游客的情感体验,是衡量一位导游能力高下的重要指标。因此在旅游管理体验课堂上,开展模拟导游活动,不仅有助于学生在边游览边解说过程中,掌握相关旅游知识,还能强化学生的情感体验。在旅游管理专业实习活动中,可以结合体验式教学法,开展模拟导游活动,来强化学生的情感体验。在此过程中,必须采取行之有效的方法来实现。通常,在模拟导游实习活动中,需要结合多媒体手段开展教学。比如通过多媒体,以幻灯片为背景,将景点相关的图片用幻灯片播放,使学生如临其境,并就着图片,以导游的身份进行讲解,然后现场的教师和学生对此加以评价,通过此来不断强化其知识和能力的掌握。通过这样的方式,一方面极大程度地促进了学生主动学习、积极参与课堂的兴趣,另一方面,也提高了课堂教学的灵活性和趣味性,使体验式教学恰到好处。
2.2结合旅游管理案例教学,提升学生思维体验
什么是案例教学法?简单地说,案例教学法指的是教师在学生掌握相关理论和知识基础的前提下,从旅游管理专业教学目标和内容出发,结合学生实际情况,通过精心策划和指导,运用典型案例,引导学生对案例进行深入分析和解读,以此来提高学生思考问题、分析问题、探问题、解决问题等能力,同时培养学生正确的管理理念、沟通能力和合作能力等的教学方法。在现代旅游管理专业教学中,案例教学法在旅游管理专业教学上的优势不断地被实践证明,并发挥着越来越重要的作用。而在旅游管理体验式教学课堂上,结合案例教学法,有助于用现实案例,构建起实际体验情境,并将学生进一步引入案例情境中,去整理、分析、理解案例,以此来提升学生思维体验,使学生在实际情境体验中,体验自主学习、合作学习的开放型学习氛围,从而促进学生思维得以不断深化。
总而言之,体验式教学是在整合许多创新的教学理念和方法的基础上形成的,在旅游管理学科教学中开展体验式教学,需要摒弃传统旧的教学观念和模式,积极开创全新的教学模式,以教学课堂作为开展体验式教学的主要场所,充分发挥教师在体验式课堂上的主导地位。同时,还需要积极创造学生体验机会,从各个环节、各个方面培养学生体验意识,并以此来深化学生的情感、思维以及综合等方面的体验。
摘要:随着信息技术的快速发展,企业要保持竞争优势必须对企业发展过程中的内外部信息全面及时的掌握,并制定出全面、准确的竞争战略,而其实现需建立在以数据挖掘为基础的战略管理会计基础上。本文以此为研究对象,对基于数据挖掘的战略管理会计体系框架构建和实施等问题展开研究,为挖掘现代企业的竞争优势作出努力。
关键词:数据挖掘;战略管理会计;问题
在信息技术不断深化和推广过程中,战略管理会计的重要性逐渐凸显。但信息作为重要的企业战略资源,其及时性、可靠性、收集处理、管理方式等方面都发挥着显着的变化,使企业战略会计管理受到严峻的挑战。基于数据挖掘的战略管理会计可提升其对环境的适应能力,实现企业的竞争优势,所以对其展开研究现实意义显着。
一、基于数据挖掘的战略管理会计体系框架构建
基于数据挖掘的战略管理会计的实施要以战略管理及其基本原理为指导,要实现数据支持和经验判断的充分结合,要在人机结合的同时坚持以人为主,顺应企业的组织流程和文化内涵,以此实现企业对相关信息的充分利用,使其对数据信息的理解更加全面,进而提升战略管理会计在企业决策中的相关性,提升企业整体的竞争实力。现阶段通常将大数据、云计算、商务智能等信息环境下企业信息化实践中数据挖掘理论和技术相关的战略管理会计活动称为基于数据挖掘的战略管理会计,所以其体系框架必然要涵盖基础理论与方法、数据存储、信息分析与整合、知识发现、战略管理五个层次,结合战略管理相关理论和企业总体、业务、职能等方面的战略目标,实现整合、挖掘、分析不同数据源的数据,进而通过数据挖掘提升企业的战略决策和整体运营的水平,在此过程中数据挖掘主要发生于信息分析与整合和知识发现两层结构中,可见基于数据挖掘的战略管理会计体系是实现将数据转化为信息、知识、智慧、价值的循序渐进的过程。
二、基于数据挖掘的`战略管理会计体系框架实施分析
此过程的实现需要经过以下流程:首先,要以战略管理会计的基本要求为依据对分析问题进行定位,对需要的内外部信息进行判断。现阶段大部分企业通过向管理者和员工组织调查的方式进行确定,保证搜集信息的系统化,在此过程中要求企业管理者对分析需求的提出和过滤有较强的能力,使分析的效率和效果得到保证。其次,将企业经营过程中相关的内部外部信息利用各种数据收集系统输入企业数据库,使企业内部经营管理信息、企业宏观环境分析、产业分析、竞争市场分析等通过信息管理系统可以得到准确的反映,在清洗、转化、集成等数据处理后将相关数据输入数据仓库,为企业数据挖掘提供支持。再次,结合战略管理会计相关理论方法,如战略成本管理、战略综合业绩评价等,实现信息资源向决策知识的转变,为数据挖掘主题、数据理解、模型选择、评价分析结果等方面提供思路和指导,使数据分析的结果得到不断优化,而且在人机反馈的过程中战略管理会计相关工具可得到针对性的优化。然后,利用数据挖掘信息服务的分支系统以各种形式定期向相关管理者提供数据挖掘结果,并结合不同员工的权限进行针对性的安全设定,保证企业的战略信息安全,因此企业不同职位的员工都可以结合与其职位相对应的数据挖掘结果进行自我管理与提升,进而提升企业整体的运营效果。
可见基于数据挖掘的战略管理会计的实现需要高层管理者的支持,以此保证数据分析和收集的全面性和及时性;需要全体员工的积极参与,基于数据挖掘的战略管理会计的作用需要结合组织管理实现,而员工是组织管理的主要对象;需要安全高效的数据库管理系统作支持,使企业数据系统化分析、安全可靠应用得到保证;需要具有较高专业能力的会计人员参与,使蕴藏在数据挖掘中的相关关系得到发现和应用。
三、基于数据挖掘的战略管理会计的作用
在企业竞争环境分析、危机预警等方面基于数据挖掘的战略管理会计发挥着不同的作用,在竞争环境分析中通过定义问题、信息源确定、数据搜集与整理、输入数据存储系统、数据挖掘、结果分析与表达等环节,可以使企业的应变能力得到提升,使竞争环境得到实时的监控,而且将企业的管理落实到企业内部员工个体中,极大的提升企业对环境的适应能力;在危机预警方面,利用业务信息系统和环境监测系统,通过提出预警需求,确定信息源、搜集加工资料、数据挖掘、获取预警报告,进行预警反馈等流程,有利于企业构建建立在数据挖掘基础上的财务预警模型,全面生产经营和外部环境预警分析、实现企业经营过程中的信用风险分析和客户欺诈预警,可见其有利于减少企业经营过程中的风险,使企业发展的持续性和稳定性更有保证。战略管理会计是企业为实现长久发展而探索的成果,随着信息科技的发展,信息的规模、可靠性等方面都发生较大的变化,这要求战略管理会计要加大数据挖掘的能力,所以基于数据挖掘的战略管理会计是现代企业发展的必然选择。
四、结束语
通过上述分析可以发现,基于数据挖掘的战略管理会计是企业在信息科技不断发展过程中为实现竞争优势的必然选择,其有利于企业在大数据中准确获取并应用有利信息,挖掘自身优势,制定正确的发展战略,所以基于数据挖掘的战略管理会计应受到现代企业的高度重视。
参考文献:
[3]翟坤。基于数据挖掘的成本管理方法研究[d].大连:大连理工大学,
(1)与酒店中西餐厅的主管和经理座谈了解我校实习生的工作状态,了解酒店企业专业用人需求特点,学习酒店中西餐厅服务与管理工作经验。
(2)在酒店中西餐厅营业运营期间,以实习主管的身份留意观察酒店不同岗位的员工服务用餐客人的方式以及灵活处理客人纠纷的技巧。
深入旅行社企业顶岗实践工作期间的主要工作学习任务:
(1)与总经理座谈,学习旅行社经营与管理的行业经验,为高职“旅行社经营与管理”课程提供教学建议。
(2)与旅游计调业务总监座谈,学习如何依据旅游客人的需求计调制作旅游线路,并学习组团计调如何向地接社询问目的地的旅游信息和价格,然后再把完整的报价和完整的线路行程汇报给旅游客人,从而为旅行社计调业务的教学提供真实的案例和完善的思路。
(3)与会议计调业务总监座谈,学习旅行社如何向会议主办方提供完善的会议接待方案,具体而言包括酒店会议场地布置、参会人员的酒店住宿安排以及参会人员接送服务的车辆安排。
(4)与公司财务总监座谈,学习了解旅行社在经营上的办公费用开支情况和税收缴纳情况,从而为“旅行社经营与管理”课程在财务方面的教学提供行业经验和建议。
(5)参与旅游客人和参会客人的接送服务接待工作,学习旅行社在接送服务环节的接待要求和服务流程,为旅行社接送服务环节的教学积累真实的教学案例。
(6)参与单位团队京山鸳鸯溪漂流一日游活动的跟团实习活动,了解学习旅行社在一日游旅游活动的旅游安排情况和旅游费用的支出情况与公司利润的获取情况。
(7)参加公司每周日早上的例会,听取公司各位同事对旅游业务的执行情况和公司总经理对上周工作的总结和本周工作计划的安排,依据自身的顶岗实践情况谈收获与体会,对公司的发展提出中肯的建议。
(8)在总经理指导下完成设立旅行社可行性研究报告的撰写工作,从而学习了解设立旅行社的法律程序和所需要的文件资料。
(9)在总经理指导下完成公司在旅行社业务、人事、财务、日常行为规范等方面的制度规范文件,从而全面了解旅行社的经营与管理流程,并结合公司实际情况提出规范性制度,帮助公司走向正规化发展。(10)协助公司总经理与两个业务总监完成对我校20xx级导游专业学生的校园招聘工作,从而学习了解旅行社的用人要求和我校毕业生的实习工作要求。
深入酒店企业顶岗实践工作的心得体会笔者曾经在深圳宝利来大酒店中餐厅以实习主管的身份顶岗实践两天时间,在深圳宝晖商务酒店西餐厅以实习主管的身份顶岗实践一周左 右。笔者的心得体会有如下四点:
(1)笔者向酒店中西餐厅的经理和主管们学到了很多酒店餐饮经营之道和餐饮服务理念。
(2)在餐厅里,笔者认真观察主管、部长和服务员等餐厅工作人员如何为客人服务,深刻认识到餐饮部实习生的辛苦。
(3)在酒店餐厅,笔者观察了对用餐客人的服务流程以及用餐客人提出的问题如何解决等,为高职“餐饮服务与管理”的教学工作积累了生动的教学案例。
(4)通过向酒店的经理、主管、部长和服务员等餐厅工作人员学习餐厅经营和服务的方式和理念,笔者认识到酒店对实习生看重的是灵活性和开口服务能力,从而也培养了自己成为“双师型”教师的职业素养和职业能力。深入旅行社企业顶岗实践工作的心得体会笔者曾经在武汉臻航国际旅行社以总经理助理的身份顶岗实践两周时间。
心得体会有如下四点:
(1)笔者向旅行社总经理学习了旅行社经营与管理经验,完善了自身对高职“旅行社经营与管理”课程的教学思路。
(2)笔者向旅行社的计调和导游业务能手学习了旅行社计调业务流程和导游带团工作流程。
(3)通过参与旅行社接送服务和跟团实践活动,笔者为“旅行社经营与管理”课程的高职教学积累了生动的教学案例。
(4)笔者协助旅行社总经理完成了面向我校大三毕业生的招聘工作,认识到旅行社行业人士对应届毕业生的要求是:既要有扎实的理论知识、灵敏的逻辑思维能力和灵活的应变能力,还得有在旅行社行业的工作经历,从而为今后的教学工作指明了方向。
笔者通过在酒店和旅行社顶岗实践工作,收获颇多,认为高职旅游管理专业教师很有必要利用寒暑假时间去旅游企业顶岗实践。
我还认真思考了以下几种顶岗实践方式。与旅游企业管理人员和业务人员座谈,学习旅游服务方式和旅游企业经营管理经验高职院校专业教师深入酒店和旅行社等旅游企业是在不影响旅游企业正常运营的前提下,向旅游企业专业人士学习经营管理经验和服务方式,从而有利于高职旅游管理专业的专业课程教学工作、完善教学思路和指导高职学生对旅游行业有全面的认识。比如,笔者在酒店中西餐厅顶岗实践期间,深刻理解酒店餐饮主管所说的“分工不分岗”经营服务理念。笔者在旅行社顶岗实践期间,深刻感受到中小型旅行社通过长期经营已经积累了很多老客户,而且非常重视诚信经营和旅游服务质量。
在旅行社顶岗实践期间,笔者还了解到以组团业务为主的旅行社对待不同客户会收取不同的费用并采取不同的服务方式和团款收取方式和时间。参与具体的旅游接待活动或向基层服务人员了解印象深刻的工作经历,为高职专业课程的教学工作积累教学案例在酒店、旅行社等旅游企业顶岗实践期间,高职教师可以试着参加一些具体的旅游接待活动,或向酒店、旅行社等旅游企业的基层服务人员了解他们在处理客人纠纷或带团过程中如何处理客人异议等,了解从业人员印象深刻的工作经历,为专业课程教学工作积累生动的案例。比如,笔者在旅行社顶岗实践期间,认真观察了计调人员如何依据客人的要求与地接社、酒店、票务等旅游服务供应商落实旅游接待计划,还亲自参与了接送服务和一日游跟团活动,这些都为今后的专业课程教学工作积累了生动的教学案例。利用自身扎实的理论功底,帮助中小型旅游企业走上正规化发展道路经过暑假为期两周的顶岗实践工作,笔者感觉到高职院校旅游管理专业的专业教师深入酒店、旅行社等旅游企业进行顶岗实践工作,不仅能向企业专业人士学习旅游业务工作流程和旅游服务方式,还可以依靠自身扎实的理论功底向旅游企业走向正规化发展提出自己的建议。
比如,笔者在武汉这家旅行社顶岗实践期间曾经在旅行社总经理帮助下完成了公司在业务、人事、财务和日常行为规范等方面的制度规范化文件的撰写工作。深入大型旅游企业顶岗实践工作,与旅游企业合作进行横向课题研究,提高高职旅游管理专业教师的科研能力教师在酒店和旅行社等旅游企业顶岗实践,不仅可以为教学工作积累丰富的教学素材,还可以与旅游企业合作进行横向课题的研究。
比如,可与大型旅游酒店集团合作研究酒店与学校“订单班”培养模式,为酒店提供符合企业要求的酒店实习生,可与大型旅行社合作研究人才培养方案和旅行社市场需求变化趋势等。目前,高职院校的专业教师大部分都以课堂教学为主,相比于普通高等院校的教师科研项目较少,所以可以借助顶岗实践的机会,与旅游企业合作完成一些横向课题的研究,从而为旅游企业提供有价值的研究成果,提高高职专业教师的科研能力。笔者经历了酒店和旅行社顶岗实践工作以后,在综合考虑高职教学特色和高职教学队伍现状的前提下,感觉收获颇多,不仅完善了教学思路,积累了生动的教学案例,还与企业合作完成了横向课题的研究。希望高职院校和校企合作企业鼓励高职专业教师每年寒暑假去旅游企业顶岗实践一段时间,对更好地提高高职教学质量十分有利。
一、商业银行战略管理会计应用的现状
(一)商业银行战略管理会计理论和方法体系不完善
我国引入战略管理会计理论的时间相对西方发达国家较晚,虽然现阶段对此理论的介绍和推广已经逐步落实,但由于未将此理论与我国商业银行实际发展状况紧密融合,所以在理论普及的过程中,并没有得到全面、准确的认识,致使现阶段我国商业银行并未确定战略管理会计运行的总体原则和完善的运行机制,甚至未实现对战略管理会计实施步骤的统一规划和安排,导致现阶段我国商业银行对于战略管理会计仍是“想怎么做,怎么做”,这对商业银行战略管理会计的应用和发展产生了滞碍。
(二)传统管理会计信息系统的阻碍
现在部分商业银行仍采用传统管理会计信息系统,此种系统虽然能够满足商业银行内部运行预测、规划、控制、考核、决策等环节的信息需要,但战略管理会计不仅将眼光定向商业银行内部,信息更应该覆盖商业银行的竞争对手及顾客,这样才能够实现为战略决策提供信息支持,通过收集、分析战略对手的相关信息,判断竞争对手存在的优势及劣势,并根据商业银行自身实际情况进行战略调整,例如收集竞争对手的产品种类、市场营销活动等,但传统管理会计系统在此方面并不能体现优势。除此之外,商业银行使用的传统管理会计系统将收集的信息按部门或系统构成分类,这导致原本不全面的信息被再次分割,信息分析、整理受限,阻碍了商业银行战略管理会计的实际应用。
(三)商业银行推行作业成本法存在实际困难
成本作业法是一种成本核算的方法,即作业的过程中必然会消耗资源,将消耗的资源计入相应的'作业中,并确定产生消耗的成本动因,进而实现各作业成本向成本计算对象的分配,商业银行其资源即人事、场地、设备、事务等产生的花费,而作业即商业银行所提供的所有无形业务,如贷存款、财务会计等。由此可见商业银行的作业比较复杂,对其进行成本管理不论是分析资源动因还是划分作业成本库等都存在一定困难,特别是实践中会发生诸多与理论不完全相符的情况,造成作业成本法应用存在现实困难,例如商业银行在运营过程中间接成本会发生变动,而且造成变动的因素较多,这就为作业动因的确定制造了难度,如果将所有因素都视为作业动因就会使数据收集的难度加大,造成不必要的人员物资浪费,而选取部分因素作为作业动因,可能造成产品成本信息不全,成本控制管理过于片面,所以现阶段成本作业法应用不灵活也阻碍了战略管理会计的应用。
(四)商业银行绩效评价存在问题
商业银行在绩效标准方面,普遍以部门的角度进行员工绩效,而忽视组织层面的全局战略绩效,将平衡计分卡单纯应用于员工个人绩效方面,使其与组织的愿景、发展战略等相脱离,并未发挥预期的目的;在绩效指标方面,由于错误的将绩效以员工个人为对象,所以在确定绩效指标时只能以员工岗位职责为依托,指标往往不能显示关键问题;在评价体系方面,商业银行往往将眼光定位于银行内部的财务指标,而对外部竞争对手影响下的长远目标并未重视,所以评价体系并不全面。
二、改善商业银行战略管理会计应用的措施
(一)加强相关理论研究力度,逐步落实实践
在理论方面首先应认识到我国战略管理会计理论研究相对落后;其次组织在会计学、管理学等与战略管理会计相关领域的权威专家成立专门的理论研究机构,实现组织理论研究,实现资源的最大化集合;再次对理论研究过程中存在的问题进行针对性的调查研究,提出解决办法,逐渐完善战略管理会计的理论体系;然后将国内外理论成果与我国具体国情和商业银行现阶段发展状况相融合,提出适合于商业银行应用的战略管理会计理论;最后将会计理论按照先试点后推行循序渐进的办法,应用于商业银行,使商业银行战略管理会计实践有充分的理论作指导。
(二)加强商业银行信息化建设力度
信息是战略管理会计应用的基础,所以要加大其应用必须提升信息质量,实现全面、准确、及时收集、分析,考虑到传统管理会计系统的缺陷,所以建立针对竞争对手或顾客的外向型信息采集系统是现阶段信息化建设的关键,使商业银行战略决策可以有充足的外部信息做依据。另外成立专业的、权威的信息管理部门也是商业银行信息化建设的关键,这样可以有效避免信息不共享造成信息分割,阻碍商业银行战略决策;除此之外,要实现商业银行内部信息及外部信息的全面收集、科学分析,需要配备统一的计算机设备、统一信息机业务编码、实行统一的规章制度进行管理,并有统一的监督做支撑,由此可见,信息化建设不仅包括信息化系统建设,还包括信息化人才队伍的建设。
(三)根据实际情况应用作业成本法
成本对象消耗作业,作业消耗资源是作业成本法不变的法则,可以看出通过作业成本法可以有效的提升成本准确度,但对于精确成本信息却并没有强制性的要求,所以在应用作业成本法时要注意成本对象的划分满足成本管理需要即可,并不是划分的越精准越好;在选取成本动因时要考虑其与间接成本相关性,通常相关性与计算准确性成正比,而且要从重要成本动机入手,这样可有效减少工作量,提升准确性;在进行成本分配时,主要考虑不能够直接对应成本对象的资源,这样会避免成本消耗被重复分配。
(四)加强平衡计分卡的实用性
现阶段商业银行对平衡计分卡的应用普遍存在片面性的问题,为了扭转局面可以应用战略地图,通过战略地图将战略全方位的表述出来,使员工能够清晰的掌握商业银行的战略管理会计,由此可见战略地图是平衡计分卡的补充说明,是商业银行与员工的沟通媒介,从而使员工对个人的绩效有更加全面的认识。在确定绩效指标的过程中,可以监理部门的数据库,既存储部门历史运行数据,又存储竞争对手的相关指标,使指标确定更加具有针对性,而且与现实更贴近,这样不仅可以调动部门完成绩效的积极性,为商业银行创收,而且逐渐完善商业银行的评价体系,有利于其长期发展。
(五)将战略管理会计理念与商业银行内部文化相融合
商业银行内部文化是商业银行长期运营过程中积累的精神财富,其对员工的思想行为具有很强的规范和引导作用,如果商业银行战略管理会计能够与其内部文化实现融合,就会为战略管理会计提供强大的动力,使员工自发的为战略管理会计的实现而做出努力,这样不仅能调动员工积极探索战略管理会计,而且可以实现商业银行各层员工的力量集中化,这为战略管理会计的应用创造了条件。
三、结论
通过上述分析可以发现,现阶段国际金融环境的变化、国内金融体制的调整,都决定商业银行选择战略管理会计信息的必然性,只有这样才能在竞争激烈的银行金融环境中占有优势,才能满足战略决策的需要,达到战略管理的要求,但现阶段商业银行在实践战略管理会计的过程中仍然存在一些问题,需要有针对性的调整才能够得到完善,由此可见,商业银行应用战略管理会计并不是一蹴而就的,需要不断进行调整、完善,所以应以长远的眼光对待战略管理会计。
2023年数据挖掘论文选题 数据挖掘论文(实用11篇)
文件夹