数学广角教学反思
文件夹
总结是对经验的梳理,让我们少走弯路。可以结合举例和实际案例来加深总结的可信度和针对性。以下是一些项目总结的案例,希望能为大家提供一些思路。
(数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题,经历“数学化”的过程。
从学生熟悉的“放球”游戏开始,让学生初步体验不管怎么放,总有一盒子里至少放两个球,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,让学生利用已有的经验初步感知抽象的“抽屉原理”。
本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3纸个盒中,不管怎么放,总有一个纸盒里至少放进2枝铅笔”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。抽屉问题”的变式很多,应用更具灵活性。本节课的练习设计注重层次,有坡度。第1、2题,学生可以利用例题中的方法迁移类推,加以解释。第3、4题学生需要经历将具体问题“数学化”的过程,有利于培养学生的数学思维能力,让学生在运用新知灵活巧妙地解决实际问题的过程中进一步体验数学的价值,感受数学的魅力,提高数学学习的兴趣。第5题是用理论的数学知识解决生活中的游戏实际问题,从而体会数学的价值。
人教版小学数学第七册的“数学广角”是学生非常感兴趣的一个单元。这个单元的学习内容是通过日常生活中的一些简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。《标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”在日常生活中,解决问题的方法学生很容易找到,而且会找到解决问题的不同的策略,这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。虽然学生非常感兴趣,但是难度较大。所以我选择了将学生熟悉的怎样沏茶的过程和妈妈怎样为客人烙饼所利用的时间最短用一个故事贯穿起来,这些例子都是学生比较熟悉的事情,在这方面的教材处理上比较贴近学生实际,研究起来就显得较为主动。在教学中我让学生通过小组讨论与研究,摆一摆、说一说等活动形式,使学生真正懂得画流程图的.重要性,掌握画流程图的方法,并能用正确的画流程图的方法画图表示活动方案,从而明白一个非常重要的道理,那就是“能同时做的事情越多,所用的时间就越少”的道理。
从开始的导入解决问题的一种思维方法:“提出设想——验证设想——得出结论”来明确指导学生学习研究的方法。在教学中让学生能有条理的进行研究。数学广角的教学本身就是让学生学习数学的思维,这点在我的课上应该是体现了。
1、从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察,操作,实验,推理,交流等活动寻找解决问题的方法,从不同的角度选择最优化方安。让学生在解决问题中初步体会数学方法的应用价值,初步体会优化思想。
2、烙饼的教学过程体现了从实践操作到探索结果,从直观的实验到抽象的思维,再到深入探索发现规律并运用规律来解决问题的过程。
3、立足于教材,但又发展了教材。
1、要给予学生充分的独立思考的时间。交流时,要让学生更清楚的知道发言同学的观点产生的原因。
2、发现规律的过程还可以花更长的时间,让学生再多烙饼,更清楚的明白单数的饼和双数的饼的不同烙法。
3、教师的语言还可以简练些。
设计本节课时,我们可以看出教者在准备上还是挺足的,特别在信息的收集上,教师很花费了一定的心思。老师把这节课当作实践活动课来教学,用一节课来完成有关编码的内容,这样把重点就放在认识与编码两块内容上,一般老师就教学身份证号码,而对邮政编码少有涉及,往往是一笔带过,这样设计非常有道理。但教材是怎样的呢?我也查阅了人教版教材,《数字与编码》是人教版教材五年级上册数学广角里内容,教材说明把这部分的内容分三节课教学,我个人认为,第一节课教学例1例2,主要是对一些编码如邮政编码和身份证号码的认识,第二课时教学如何进行编码,第三课时进行综合练习。所以教者就根据教材的安排,把这节课着重的放在对编码特别是身份证号码的认识上,让学生初步去尝试,充分体现教材意图。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的,编码的很多知识都是已定知识,如果纯粹让学生了解这些编码的话,那么一味讲解学生可能更容易获得知识,但这样很容易上成是常识课或者生活指导课,怎样体现出数学味呢,怎样用数学的眼光观察与认识生活中常见的数字编码呢?老师在本节课做了一些努力,例如,出示不同地区的身份站证号码,让学生经历多次观察、比较、分析这些编码,在师生之间的交流与互动中,加强横向与纵向数学化的过程,使学生能从身份证号码的具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法。
本节课中教者还力图渗透一些基本的学习方法,如观察,比较,分析、猜测等方法始终贯穿着整节课。我觉得,如果单单让学生获得一些有关编码的知识似乎意义不大,而日常生活中的很多编码也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的认识编码乃至认识更多更广的生活世界,这也是我们教师要在教学中经常要体现地重要思想。
情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容,营造一个教学情境,帮助学生在广泛的文化情境中学习探索,导入新课的目的是要引起学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。
理解“抽屉原理”对于学生来说有着一定的难度,在教学例题:把5个苹果放进2个抽屉中,证明,不管怎么放,总有一个抽屉里至少放进了3个苹果。我是这样教学的:首先从简单的情况入手研究(把3个苹果放进2个抽屉,可以这么放?),通过简单的教学,不仅为学生学习例题铺垫,同时又可以渗透解决复杂的问题可以将问题简单化或者已经学过的知识的这一种思想。
教学,是一门学问,更是一门艺术。特别是数学这一门学科,课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,课堂教学中,教师应严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。
练习,是学生在老师的指导下,巩固和运用知识,形成技能,技巧并提高能力的一种教学方法。要让全体学生计算达到熟练,思维得到发展,就必须加强针对性的练习。但是,如果在教学中,单一的进行练习,不仅学生的解题能力不容易提高,使学生产生乏味、枯燥的感觉,而且会使学生的思维呆板。由此影响学生的听课效率和练习效果。相反,适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。
二年级简单的推理是学生以后学习数学推理、分析问题的基础,因此,这个内容显得很重要,既是对学生已有知识的进一步提升,又是为今后的学习打下好的基础做准备。这节课有优点,也有不足的地方,使我产生以下几点想法。
1、采用游戏引入,激发学生的学习兴趣,适合学生的年龄要求。
2、教学设计采取层层推进,由两个事物,知其一个推出另一个的,到三个事物的推理,在教学中善于制造矛盾,让学生产生知识的冲突,继而引导学生进行推理。
3、练习设计的比较好,练习具有趣味性和挑战性,始终让学生保持好的精神状态。
4、板书设计好,设计简单明了。
1、激励的手段还不够多样。
2、引导学生说得不够清晰。
3、对问题的预设准备不充分。
课还有许多地方要改进,但这是一节成功的课,只要不断改进,课会上得更出色。
师:新学期开始班里来了一对双胞胎兄弟,哥哥叫大壮,弟弟叫小壮,(出示图片)你能分出谁是哥哥谁是弟弟么?为什么?(学生可能回答不能,因为他们长的一模一样)。
1、做出判断。
师:现在其中的一个说:“我不是哥哥。”现在你能指出谁是哥哥,谁是弟弟吗?
2、说明理由。
你为什么做出这样的判断?
先在小组内交流,然后班内汇报。
3、小结。
师:(小结同学们推理的过程)刚才同学们根据双胞胎兄弟中一人的话,判断出了谁是哥哥,谁是弟弟。这就是我们今天要学习的简单推理(板书课题)。
4、找气球。
学生判断并说明理由。
1、可以在完成课本101页的第3、4题的基础上完成下列有趣的题目。
2、这三组影子分别是哪组积木的投影?请连线,并说明为什么?
3、红圈中的积木和哪块积木拼合,才能成为一个和左图一样的正方体?
今天这节课有意思吗?为什么呀?你有什么收获?
教学目标。
1.使学生通过观察、猜测、实验等活动,找出最简单的事物的排列数和组合数。
2.培养学生初步的观察、分析及推理能力。
3.初步培养学生有顺序地、全面地思考问题的意识。
本课是小学六年级数学广角的内容,初看教学内容,我甚至没有看懂所学的内容与我们现在学习的知识有多大联系,不知道这部分知识能够解决什么问题,而且这部分知识又有一定的难度。但我是一个喜欢冒险与挑战的人,觉得越是有难度的课,如何能让学生理解并掌握,专研这种课对于我个人来说是非常有价值的。因此,我毅然决定的选择了这节课。
细细的专研教材,终于有了比较清晰的思路,明确了教学的目标。
本堂课着眼于学生数学思维的发展,通过猜测、验证、观察、分析等活动,建立数学模型,渗透数学思想。
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。
生兴趣,让学生经历探究“抽屉原理”的过程,初步了解了“抽屉原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
课后,通过方丽娜老师的指点,我觉得,有以下几方面与大家共勉。
情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容,营造一个教学情境,帮助学生在广泛的文化情境中学习探索,导入新课的目的是要引起学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。我以四人小组的形式玩“剪刀、石头、布”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象。通过教学发现,这样课堂比较“杂与乱”,缺少一种理性。因此,将此游戏设计为:猜一猜,班上有几位同学的生日是在同一个月的。这样的设计更加的符合教学。
理解“抽屉原理”对于学生来说有着一定的难度,在教学例题:把5个苹果放进2个抽屉中,证明,不管怎么放,总有一个抽屉里至少放进了3个苹果。我是这样教学的:首先从简单的情况入手研究(把3个苹果放进2个抽屉,可以这么放?),通过简单的教学,不仅为学生学习例题铺垫,同时又可以渗透解决复杂的问题可以将问题简单化或者已经学过的知识的这一种思想。
教学,是一门学问,更是一门艺术。特别是数学这一门学科,课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,课堂教学中,教师应严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。
练习,是学生在老师的指导下,巩固和运用知识,形成技能,技巧并提高能力的一种教学方法。要让全体学生计算达到熟练,思维得到发展,就必须加强针对性的练习。但是,如果在教学中,单一的进行练习,不仅学生的解题能力不容易提高,使学生产生乏味、枯燥的感觉,而且会使学生的思维呆板。由此影响学生的听课效率和练习效果。相反,适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。因此,在不改变练习内容的前提下,可以适当地改变一下形式:如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。
本次精品课程研究的内容是人教版三年级下册第9单元《数学广角》。本单元主要内容是集合和等量代换这两种数学思想方法。由于新课标把“双基”改变“四基”,增加了基本思想、基本活动经验,强调学生不仅要获得适应社会生活和发展需要的数学知识和应用技能,还要获得数学基本思想及活动经验,运用数学的思维方式去观察、分析社会,解决生活中的问题。因此,本次精品课程研究结合新课改要求探讨数学思维方法的渗透。
在本单元的研究过程中,结合了实际内容共安排了2个课时。为了提高教师的教研水平,推出实效的精品课程,每个课时安排三次磨课,推出了“同课多轮,逐层推进;同课异构,螺旋上升”的研究思路。每次上完课,我们进行集体评课,找出本节课的亮点以及不足之处,并且提出修改意见。老师们在一次次的思维碰撞当中,进一步改进教学方法,以达到资源共享,优势互补!
在这两个内容的教学上都采用了课前导学的形式,让学生运用学习方案进行课前预习。如:在《集合思想方法》的学习方案中设计了排队的情景,让学生清晰理解重叠;而在《等量代换思想方法》的学习方案中增加了“曹冲称象”的故事,并引导学生理解其中蕴含的数学知识。这样通过课前预习,学生提前进行自主学习、独立思考,带着知识和疑问走进课堂,提高了学习兴趣,并把被动学习变为主动学习,充分发挥学生的自主学习能力,同时提高教学课堂的实效性。
数学课程标准强调,教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。由于本单元学习内容是较为抽象的集合与等量代换思想方法,而数学思想是蕴涵在数学知识形成、发展和应用的过程。所以,在教学过程中,教师都注重创设情景,让学生经历探究、合作、交流等活动,让学生从具体的实践探究、合作交流中深刻领悟数学思想方法,逐步形成自己的思想方法,获得活动基本体验。
如在《集合的思想方法》中,老师并没直接告诉学生怎样填韦恩图,而是让学生通过观察、小组讨论的形式,逐步理解韦恩图各部分的含义,并根据韦恩图进行计算。而在《等量代换的思想方法》中,教师创设了具体情景让学生先进行小组合作,再进行汇报交流,在学生猜测、观察、探究、交流的活动中找出1个西瓜与几个苹果的重量相等,深刻体会等量代换的思想方法。因此,在数学思想方法的渗透中,创设有效情景,让学生进行探究学习是十分中重要而有效的教学方式。
在本单元的教学中教师都善于直观、形象的教育手段帮助学生理解抽象的数学思维。如在教学《集合的思想方法》时教师通过多媒体课件清晰形象地呈现集合图,特别是重叠部分形象具体地展现,让学生深刻理解韦恩图各部分表示的含义。而在《等量代换的思想方法》的教学中,多媒体课件的作用发挥得淋漓尽致,清晰地展示代换的过程,帮助学生理清解题思路,深入理解等量代换的思想。因此,在教学抽象的数学知识时,多媒体课件的作用也功不可没。
本单元的教学除了让学生初步感悟集合与等量代换的基本数学思想方法,还要运用数学基本思想方法解决实际问题。因此在学生充分体会理解的基础上如何运用于生活实际也十分重要。那么在本单元的教学中教师都结合了生活实际,让学生灵活应用知识解决问题,充分体会数学与生活的联系。如在《等量代换的思想方法》的教学中,教师密切联系学校开展的雏鹰争章活动,让学生运用已学的等量代换知识进行解决,这样的问题情境,让学生深刻体会数学源于生活用于生活。
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。
2024年数学广角教学反思(模板8篇)
文件夹