最新新课程高一数学必修一教案(模板9篇)
文件格式:DOCX
时间:2023-10-22 08:53:02    小编:高工要跑路

最新新课程高一数学必修一教案(模板9篇)

小编:高工要跑路

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。

新课程高一数学必修一教案篇一

教学准备

教学目标

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- b代替b看看有什么结果?

新课程高一数学必修一教案篇二

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

新课程高一数学必修一教案篇三

1、教学目标

(1)理解函数的概念;

(2)了解区间的概念;

2、目标解析

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

【教学过程】

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.

1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。

问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

新课程高一数学必修一教案篇四

1、教材(教学内容)

2、设计理念

3、教学目标

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

6、教法分析

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

新课程高一数学必修一教案篇五

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的'空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

(二)实践动手作图

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本p10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本p12练习1、2p18习题1.2a组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2空间几何体的直观图(1课时)

新课程高一数学必修一教案篇六

分离各种细胞器的方法:差速离心法

细胞膜、细胞壁、细胞核、细胞质均不是细胞器。

一、细胞器之间分工

1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。

2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。

3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)

4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。

5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。

包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)

6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。

溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。

7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。

8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。

二、分类比较:

1.双层膜:叶绿体、线粒体(细胞核膜)

单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)

无膜:中心体、核糖体

2.植物特有:叶绿体、液泡动物特有(低等植物):中心体

3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)

4.增大膜面积的细胞器:线粒体、内质网、叶绿体

5.含色素:叶绿体、液泡

6.能产生atp的:线粒体、叶绿体(细胞质基质)

7.能自主复制的细胞器:线粒体、叶绿体、中心体

8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体

9.发生碱基互补配对:线粒体、叶绿体、核糖体

10.与主动运输有关:核糖体、线粒体

新课程高一数学必修一教案篇七

1.2.1投影与三视图

课型

新课

教学目标

1、了解中心投影和平行投影的概念;

3、简单组合体与其三视图之间的相互转化。

教学过程

教学内容

备注

一、

自主学习

1、照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

二、

质疑提问

下图中的手影游戏,你玩过吗?

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

一、中心投影与平行投影

思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?

投影的分类:

把一个空间几何体投影到一个平面上,可以获得一个平面图形。从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:

正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左面向右面正投影,得到的投影图。

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

几何体的'正视图、侧视图和俯视图,统称为几何体的三视图。

三、

问题探究

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考5:球的三视图是什么?下列三视图表示一个什么几何体?

例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同。

四、

课堂检测

五、

小结评价

1、空间几何体的三视图:正视图、侧视图、俯视图;

3、三视图的应用及与原实物图的相互转化。

新课程高一数学必修一教案篇八

一、自主学习

1.阅读课本练习止。

2.回答问题

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3.完成练习

4.小结。

二、方法指导

1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画o在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

一、提问题

1.对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明。

二、变题目

1.试求下列函数的反函数:

(1);(2);

(3);(4).

2.求下列函数的定义域:

(1);(2);(3).

3.已知则=;的定义域为.

1.对数函数的有关概念

(1)把函数叫做对数函数,叫做对数函数的底数;

(2)以10为底数的对数函数为常用对数函数;

(3)以无理数为底数的对数函数为自然对数函数。

2.反函数的概念

在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。

3.与对数函数有关的定义域的求法:

4.举例说明如何求反函数。

一、课外作业:习题3-5a组1,2,3,b组1,

二、课外思考:

1.求定义域:.

2.求使函数的函数值恒为负值的的取值范围。

新课程高一数学必修一教案篇九

教学准备

教学目标

1、知识与技能

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣。(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

2、过程与方法

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

教学重难点

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

难点:终边相同的角的表示。

教学工具

投影仪等。

教学过程

【创设情境】

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

【探究新知】

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

五、评价设计

1.作业:习题1.1a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

课后小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合。

课后习题

作业:

1、习题1.1a组第1,2,3题。

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点。

板书

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
复制